IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2122-d1638749.html
   My bibliography  Save this article

Research Progress of Thermoelectric Materials—A Review

Author

Listed:
  • Jun Wang

    (School of Energy and Environment, Southeast University, Nanjing 210096, China
    Engineering Research Center for Building Energy Environment & Equipment, Ministry of Education, Nanjing 210096, China)

  • Yonggao Yin

    (School of Energy and Environment, Southeast University, Nanjing 210096, China
    Engineering Research Center for Building Energy Environment & Equipment, Ministry of Education, Nanjing 210096, China)

  • Chunwen Che

    (School of Energy and Environment, Southeast University, Nanjing 210096, China
    Engineering Research Center for Building Energy Environment & Equipment, Ministry of Education, Nanjing 210096, China)

  • Mengying Cui

    (School of Energy and Environment, Southeast University, Nanjing 210096, China
    Engineering Research Center for Building Energy Environment & Equipment, Ministry of Education, Nanjing 210096, China)

Abstract

Thermoelectric materials are functional materials that directly convert thermal energy into electrical energy or vice versa, and due to their inherent properties, they hold significant potential in the field of energy conversion. In this review, we examine several fundamental strategies aimed at enhancing the conversion efficiency, classification, preparation methods, and applications of thermoelectric materials. First, we introduce an important parameter for evaluating the performance of thermoelectric materials, the dimensionless quality factor ZT, and present the theory of electroacoustic transport in thermoelectric materials, which provides the foundation for enhancing the performance of thermoelectric materials. Second, strategies for optimizing electroacoustic transport properties, carrier concentration, energy band engineering, phonon engineering, and entropy engineering are summarized, emphasizing that energy band engineering presents numerous possibilities for enhancing thermoelectric material performance by tuning the carrier effective mass, energy band convergence, and energy band resonance. By analyzing the importance of various optimization strategies, it is concluded that co-optimization is the primary method for improving the performance of thermoelectric materials in the future. In addition, an overview of the currently available thermoelectric materials is provided, including two categories, classical thermoelectric materials and novel thermoelectric materials, along with a highlight of two thermoelectric material preparation techniques. Finally, the principles of thermoelectric technology are illustrated, its applications in various fields are discussed, problems in the current research are analyzed, and future trends are outlined. Overall, this paper provides a comprehensive summary of optimization strategies, material classifications, and applications, offering valuable references and insights for the researchers in this field, with the aim of further advancing the development of thermoelectric material science.

Suggested Citation

  • Jun Wang & Yonggao Yin & Chunwen Che & Mengying Cui, 2025. "Research Progress of Thermoelectric Materials—A Review," Energies, MDPI, vol. 18(8), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2122-:d:1638749
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanzhong Pei & Xiaoya Shi & Aaron LaLonde & Heng Wang & Lidong Chen & G. Jeffrey Snyder, 2011. "Convergence of electronic bands for high performance bulk thermoelectrics," Nature, Nature, vol. 473(7345), pages 66-69, May.
    2. Huang, Bin & Shen, Zu-Guo, 2022. "Performance assessment of annular thermoelectric generators for automobile exhaust waste heat recovery," Energy, Elsevier, vol. 246(C).
    3. Chaithanya Purushottam Bhat & Anusha & Aninamol Ani & U. Deepika Shanubhogue & P. Poornesh & Ashok Rao & Saikat Chattopadhyay, 2023. "Investigations on Bi Doped Cu 2 Se Prepared by Solid State Reaction Technique for Thermoelectric Applications," Energies, MDPI, vol. 16(7), pages 1-15, March.
    4. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoran Luo & Xiao-Lei Shi & Yongqiang Liu & Meng Li & Min Zhang & Xiaohuan Luo & Moran Wang & Xiaopei Huang & Lipeng Hu & Zhi-Gang Chen, 2025. "Metavalent alloying and vacancy engineering enable state-of-the-art cubic GeSe thermoelectrics," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Reyes García-Contreras & Andrés Agudelo & Arántzazu Gómez & Pablo Fernández-Yáñez & Octavio Armas & Ángel Ramos, 2019. "Thermoelectric Energy Recovery in a Light-Duty Diesel Vehicle under Real-World Driving Conditions at Different Altitudes with Diesel, Biodiesel and GTL Fuels," Energies, MDPI, vol. 12(6), pages 1-18, March.
    3. Jing-Wei Li & Zhijia Han & Jincheng Yu & Hua-Lu Zhuang & Haihua Hu & Bin Su & Hezhang Li & Yilin Jiang & Lu Chen & Weishu Liu & Qiang Zheng & Jing-Feng Li, 2023. "Wide-temperature-range thermoelectric n-type Mg3(Sb,Bi)2 with high average and peak zT values," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    5. Liqing Xu & Yu Xiao & Sining Wang & Bo Cui & Di Wu & Xiangdong Ding & Li-Dong Zhao, 2022. "Dense dislocations enable high-performance PbSe thermoelectric at low-medium temperatures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Luo, Ding & Yan, Yuying & Li, Ying & Wang, Ruochen & Cheng, Shan & Yang, Xuelin & Ji, Dongxu, 2023. "A hybrid transient CFD-thermoelectric numerical model for automobile thermoelectric generator systems," Applied Energy, Elsevier, vol. 332(C).
    8. Yingcai Zhu & Dongyang Wang & Tao Hong & Lei Hu & Toshiaki Ina & Shaoping Zhan & Bingchao Qin & Haonan Shi & Lizhong Su & Xiang Gao & Li-Dong Zhao, 2022. "Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    11. Yuto Uematsu & Takafumi Ishibe & Takaaki Mano & Akihiro Ohtake & Hideki T. Miyazaki & Takeshi Kasaya & Yoshiaki Nakamura, 2024. "Anomalous enhancement of thermoelectric power factor in multiple two-dimensional electron gas system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2019. "Performance evaluation of a novel thermoelectric module with BiSbTeSe-based material," Applied Energy, Elsevier, vol. 238(C), pages 1299-1311.
    13. Daniel Sanin-Villa & Oscar D. Monsalve-Cifuentes & Elkin E. Henao-Bravo, 2021. "Evaluation of Thermoelectric Generators under Mismatching Conditions," Energies, MDPI, vol. 14(23), pages 1-20, December.
    14. N. Kanagaraj & Hegazy Rezk & Mohamed R. Gomaa, 2020. "A Variable Fractional Order Fuzzy Logic Control Based MPPT Technique for Improving Energy Conversion Efficiency of Thermoelectric Power Generator," Energies, MDPI, vol. 13(17), pages 1-18, September.
    15. Nan Chen & Hangtian Zhu & Guodong Li & Zhen Fan & Xiaofan Zhang & Jiawei Yang & Tianbo Lu & Qiulin Liu & Xiaowei Wu & Yuan Yao & Youguo Shi & Huaizhou Zhao, 2023. "Improved figure of merit (z) at low temperatures for superior thermoelectric cooling in Mg3(Bi,Sb)2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Ibáñez-Puy, Elia & Martín-Gómez, César & Bermejo-Busto, Javier & Zuazua-Ros, Amaia, 2018. "Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box," Applied Energy, Elsevier, vol. 228(C), pages 681-688.
    17. Skabelund, B.B. & Milcarek, R.J., 2022. "Review of thermal partial oxidation reforming with integrated solid oxide fuel cell power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 217(C), pages 314-327.
    19. Yang, Wenlong & Zhu, WenChao & Du, Banghua & Wang, Han & Xu, Lamei & Xie, Changjun & Shi, Ying, 2023. "Power generation of annular thermoelectric generator with silicone polymer thermal conductive oil applied in automotive waste heat recovery," Energy, Elsevier, vol. 282(C).
    20. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2122-:d:1638749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.