IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2116-d1638480.html
   My bibliography  Save this article

Gossip Coordination Mechanism for Decentralised Learning

Author

Listed:
  • Philippe Glass

    (Centre Universitaire d’Informatique, University of Geneva, 1205 Geneva, Switzerland
    These authors contributed equally to this work.)

  • Giovanna Di Marzo Serugendo

    (Centre Universitaire d’Informatique, University of Geneva, 1205 Geneva, Switzerland
    These authors contributed equally to this work.)

Abstract

In smart grids, renewable energies play a predominant role, but they produce more and more data, which are volatile by nature. As a result, predicting electrical behaviours has become a real challenge and requires solutions that involve more all microgrid entities in learning processes. This research proposes the design of a coordination model that integrates two decentralised approaches to distributed learning applied to a microgrid: the gossip federated learning approach, which consists of exchanging learning models between neighbouring nodes, and the gossip ensemble learning approach, which consists of exchanging prediction results between neighbouring nodes. The experimentations, based on real data collected in a living laboratory, show that the combination of a coordination model and intelligent digital twins makes it possible to implement and operate these two purely decentralised learning approaches. The results obtained on the predictions confirm that these two implemented approaches can improve the efficiency of learning on the scale of a microgrid, while reducing the congestion caused by data exchanges. In addition, the generic gossip mechanism offers the flexibility to easily define different variants of an aggregation operator, which can help to maximise the performance obtained.

Suggested Citation

  • Philippe Glass & Giovanna Di Marzo Serugendo, 2025. "Gossip Coordination Mechanism for Decentralised Learning," Energies, MDPI, vol. 18(8), pages 1-42, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2116-:d:1638480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2116/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holjevac, Ninoslav & Capuder, Tomislav & Kuzle, Igor, 2015. "Adaptive control for evaluation of flexibility benefits in microgrid systems," Energy, Elsevier, vol. 92(P3), pages 487-504.
    2. Philippe Glass & Giovanna Di Marzo Serugendo, 2023. "Coordination Model and Digital Twins for Managing Energy Consumption and Production in a Smart Grid," Energies, MDPI, vol. 16(22), pages 1-29, November.
    3. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    4. Marzal, Silvia & Salas, Robert & González-Medina, Raúl & Garcerá, Gabriel & Figueres, Emilio, 2018. "Current challenges and future trends in the field of communication architectures for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3610-3622.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    2. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    3. Sifat, Md. Mhamud Hussen & Choudhury, Safwat Mukarrama & Das, Sajal K. & Pota, Hemanshu & Yang, Fuwen, 2025. "Novel abstractions and experimental validation for digital twin microgrid design: Lab scale studies and large scale proposals," Applied Energy, Elsevier, vol. 377(PC).
    4. Ahlam I. Almusharraf, 2025. "Automation and Its Influence on Sustainable Development: Economic, Social, and Environmental Dimensions," Sustainability, MDPI, vol. 17(4), pages 1-22, February.
    5. Chunyi Ji & Xinyue Wang & Wei Zhao & Xuan Wang & Wuyong Qian, 2025. "The Impact of Environmental Policies on Renewable Energy Storage Decisions in the Power Supply Chain," Energies, MDPI, vol. 18(9), pages 1-24, April.
    6. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    7. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    8. Si Huang & Yinping Li & Xilin Shi & Weizheng Bai & Yashuai Huang & Yang Hong & Xiaoyi Liu & Hongling Ma & Peng Li & Mingnan Xu & Tianfu Xue, 2024. "The Role of Underground Salt Caverns in Renewable Energy Peaking: A Review," Energies, MDPI, vol. 17(23), pages 1-23, November.
    9. Hussain, Shahbaz & Hernandez Fernandez, Javier & Al-Ali, Abdulla Khalid & Shikfa, Abdullatif, 2021. "Vulnerabilities and countermeasures in electrical substations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    10. Sohail Sarwar & Desen Kirli & Michael M. C. Merlin & Aristides E. Kiprakis, 2022. "Major Challenges towards Energy Management and Power Sharing in a Hybrid AC/DC Microgrid: A Review," Energies, MDPI, vol. 15(23), pages 1-30, November.
    11. Shaobo Wen & Yipeng Gong & Xiufeng Mu & Sufang Zhao & Chuanjun Wang, 2025. "Optimal Configuration of Flywheel–Battery Hybrid Energy Storage System for Smoothing Wind–Solar Power Generating Fluctuation," Energies, MDPI, vol. 18(8), pages 1-18, April.
    12. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    13. Kamil Szostek & Damian Mazur & Grzegorz Drałus & Jacek Kusznier, 2024. "Analysis of the Effectiveness of ARIMA, SARIMA, and SVR Models in Time Series Forecasting: A Case Study of Wind Farm Energy Production," Energies, MDPI, vol. 17(19), pages 1-18, September.
    14. Ferruzzi, Gabriella & Cervone, Guido & Delle Monache, Luca & Graditi, Giorgio & Jacobone, Francesca, 2016. "Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production," Energy, Elsevier, vol. 106(C), pages 194-202.
    15. Salem Al-Oun & Mohammad Fathi AlMaaitah & Al-Muthanna Al-Azamat, 2025. "Sustainable Energy Transition in Jordan: The Interplay of Regulatory Frameworks and Infrastructure," Energies, MDPI, vol. 18(5), pages 1-34, March.
    16. Ziqi Liu & Tingting Su & Zhiying Quan & Quanli Wu & Yu Wang, 2023. "Review on the Optimal Configuration of Distributed Energy Storage," Energies, MDPI, vol. 16(14), pages 1-17, July.
    17. Sylvester Johansson & Jonas Persson & Stavros Lazarou & Andreas Theocharis, 2019. "Investigation of the Impact of Large-Scale Integration of Electric Vehicles for a Swedish Distribution Network," Energies, MDPI, vol. 12(24), pages 1-22, December.
    18. Nudrat Fatima & Mahjabeen Usman & Nasir Khan & Muhammad Shahbaz, 2024. "Catalysts for sustainable energy transitions: the interplay between financial development, green technological innovations, and environmental taxes in European nations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 13069-13096, May.
    19. Weilong Wang & Jianlong Wang & Haitao Wu, 2024. "Assessing the potential of energy transition policy in driving renewable energy technology innovation: evidence from new energy demonstration city pilots in China," Economic Change and Restructuring, Springer, vol. 57(5), pages 1-37, October.
    20. Zhongwen Li & Chuanzhi Zang & Peng Zeng & Haibin Yu, 2016. "Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty," Energies, MDPI, vol. 9(7), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2116-:d:1638480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.