IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1795-d1627021.html
   My bibliography  Save this article

Research on Wind Power Grid Integration Power Fluctuation Smoothing Control Strategy Based on Energy Storage Battery Health Prediction

Author

Listed:
  • Bin Cheng

    (School of Electrical Engineering, Xinjiang University, Urumqi 830047, China)

  • Jiahui Wu

    (School of Electrical Engineering, Xinjiang University, Urumqi 830047, China)

  • Guancheng Lv

    (CGN New Energy Investment (Shenzhen) Co., Ltd., Xinjiang Branch, Urumqi 830011, China)

  • Zhongbo Li

    (CGN New Energy Investment (Shenzhen) Co., Ltd., Xinjiang Branch, Urumqi 830011, China)

Abstract

Due to the volatility and uncertainty of wind power generation, energy storage can help mitigate the fluctuations in wind power grid integration. During its use, the health of the energy storage system, defined as the ratio of the current available capacity to the initial capacity, deteriorates, leading to a reduction in the available margin for power fluctuation smoothing. Therefore, it is necessary to predict the state of health (SOH) and adjust its charge/discharge control strategy based on the predicted SOH results. This study first adopts a Genetic Algorithm-Optimized Support Vector Regression (GA-SVR) model to predict the SOH of the energy storage system. Secondly, based on the health prediction results, a control strategy based on the model predictive control (MPC) algorithm is proposed to manage the energy storage system’s charge/discharge process, ensuring that the power meets grid integration requirements while minimizing energy storage lifespan loss. Further, since the lifespan loss caused by smoothing the same fluctuation differs at different health levels, a fuzzy adaptive control strategy is used to adjust the parameters of the MPC algorithm’s objective function under varying health conditions, thereby optimizing energy storage power and achieving the smooth control of the wind farm grid integration power at different energy storage health levels. Finally, a simulation is conducted in MATLAB for a 50 MW wind farm grid integration system, with experimental parameters adjusted accordingly. The experimental results show that the GA-SVR algorithm can accurately predict the health of the energy storage system, and the MPC-based control strategy derived from health predictions can improve grid power stability while adaptively adjusting energy storage output according to different health levels.

Suggested Citation

  • Bin Cheng & Jiahui Wu & Guancheng Lv & Zhongbo Li, 2025. "Research on Wind Power Grid Integration Power Fluctuation Smoothing Control Strategy Based on Energy Storage Battery Health Prediction," Energies, MDPI, vol. 18(7), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1795-:d:1627021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1795/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoqiong Pang & Rui Huang & Jie Wen & Yuanhao Shi & Jianfang Jia & Jianchao Zeng, 2019. "A Lithium-ion Battery RUL Prediction Method Considering the Capacity Regeneration Phenomenon," Energies, MDPI, vol. 12(12), pages 1-14, June.
    2. Lin, Cheng & Mu, Hao & Xiong, Rui & Shen, Weixiang, 2016. "A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm," Applied Energy, Elsevier, vol. 166(C), pages 76-83.
    3. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    4. Petit, Martin & Prada, Eric & Sauvant-Moynot, Valérie, 2016. "Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime," Applied Energy, Elsevier, vol. 172(C), pages 398-407.
    5. Junda Huo & Jianwen Huo, 2024. "Hybrid Energy Storage Power Adaptive Optimization Strategy Based on Improved Model Predictive Control and Improved DBO-VMD," Energies, MDPI, vol. 17(13), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2023. "The impact of battery operating management strategies on life cycle cost assessment in real power market for a grid-connected residential battery application," Energy, Elsevier, vol. 270(C).
    2. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    3. Xuezhe Wei & Xueyuan Wang & Haifeng Dai, 2018. "Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling," Energies, MDPI, vol. 11(1), pages 1-15, January.
    4. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    5. Ma, Jian & Xu, Shu & Shang, Pengchao & ding, Yu & Qin, Weili & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou, 2020. "Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method," Applied Energy, Elsevier, vol. 262(C).
    6. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    7. Qiao Zhu & Neng Xiong & Ming-Liang Yang & Rui-Sen Huang & Guang-Di Hu, 2017. "State of Charge Estimation for Lithium-Ion Battery Based on Nonlinear Observer: An H ∞ Method," Energies, MDPI, vol. 10(5), pages 1-19, May.
    8. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    9. Alexandre F. M. Correia & Pedro Moura & Aníbal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    10. Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
    11. Chengning Zhang & Xin Jin & Junqiu Li, 2017. "PTC Self-Heating Experiments and Thermal Modeling of Lithium-Ion Battery Pack in Electric Vehicles," Energies, MDPI, vol. 10(4), pages 1-21, April.
    12. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    13. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    14. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
    15. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    16. Mathieu, Romain & Baghdadi, Issam & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2017. "D-optimal design of experiments applied to lithium battery for ageing model calibration," Energy, Elsevier, vol. 141(C), pages 2108-2119.
    17. Ali M. Eltamaly, 2023. "Smart Decentralized Electric Vehicle Aggregators for Optimal Dispatch Technologies," Energies, MDPI, vol. 16(24), pages 1-27, December.
    18. Tang, Xiaopeng & Gao, Furong & Zou, Changfu & Yao, Ke & Hu, Wengui & Wik, Torsten, 2019. "Load-responsive model switching estimation for state of charge of lithium-ion batteries," Applied Energy, Elsevier, vol. 238(C), pages 423-434.
    19. Xian Zhao & Siqi Wang & Xiaoyue Wang, 2018. "Characteristics and Trends of Research on New Energy Vehicle Reliability Based on the Web of Science," Sustainability, MDPI, vol. 10(10), pages 1-25, October.
    20. Hassanzadeh, Mojtaba & Rahmani, Zahra, 2022. "A predictive controller for real-time energy management of plug-in hybrid electric vehicles," Energy, Elsevier, vol. 249(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1795-:d:1627021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.