IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1692-d1622520.html
   My bibliography  Save this article

Droplet-Scale Combustion Analysis of Third-Generation Biodiesel–Diesel Blends

Author

Listed:
  • A. S. M. Sazzad Parveg

    (Department of Mechanical Engineering, University of Iowa, Iowa City, IA 52242, USA)

  • Albert Ratner

    (Department of Mechanical Engineering, University of Iowa, Iowa City, IA 52242, USA)

Abstract

Biodiesel derived from waste cooking oil (WCO) and animal fats is a promising alternative to fossil fuels, offering environmental benefits and renewable energy potential. However, a detailed understanding of its combustion characteristics at the droplet scale is essential for optimizing its practical application. This study investigates the combustion behavior of biodiesel–diesel blends (B5, B10, B15, B20, B25, B50, B75) and neat fuels (B0 and B100) by analyzing combustion rates, pre-ignition time, burning time, droplet morphology, and puffing characteristics. The results demonstrate that biodiesel concentration strongly influences combustion dynamics. Higher blends (B50, B75) exhibit enhanced steady combustion rates due to increased oxygen availability, while lower blends (B5–B25) experience stronger puffing events, leading to greater secondary droplet formation. The global combustion rate follows a non-linear trend, peaking at B10, decreasing at B25, and rising again at B50 and B75. Pre-ignition time increases with biodiesel content, while burning time exhibits an inverse relationship with combustion rate. Four distinct puffing mechanisms were identified, with lower blends producing finer secondary droplets and higher blends forming larger droplets. Puffing characteristics were evaluated based on puffing occurrences, intensity, and effectiveness, revealing that puffing peaks at B25 in occurrence and at B10 in intensity, while higher blends (B50, B75) exhibit notable puffing effectiveness. This study addresses a critical research gap in droplet-scale combustion of WCO and animal fat-derived biodiesel across a wide range of blend ratios (B5–B75). The findings provide key insights for optimizing biodiesel formulations to improve fuel spray atomization, ignition stability, and combustion efficiency in spray-based combustion systems, such as diesel engines, gas turbines, and industrial burners, bridging fundamental research with real-world applications.

Suggested Citation

  • A. S. M. Sazzad Parveg & Albert Ratner, 2025. "Droplet-Scale Combustion Analysis of Third-Generation Biodiesel–Diesel Blends," Energies, MDPI, vol. 18(7), pages 1-31, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1692-:d:1622520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Setyawan, Hendrix Y. & Zhu, Mingming & Zhang, Zhezi & Zhang, Dongke, 2016. "Ignition and combustion characteristics of single droplets of a crude glycerol in comparison with pure glycerol, petroleum diesel, biodiesel and ethanol," Energy, Elsevier, vol. 113(C), pages 153-159.
    2. Huang, Xiaoyu & Wang, Jigang & Wang, Yuxin & Qiao, Xinqi & Ju, Dehao & Sun, Chunhua & Zhang, Qibin, 2020. "Experimental study on evaporation and micro-explosion characteristics of biodiesel/n-propanol blended droplet," Energy, Elsevier, vol. 205(C).
    3. Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Umer Farooq & Muhammad Ahmad Jamil & Zareena Kausar & Noor Us Sabah & Muhammad Faizan Shah & Hafiz Zia Ur Rehman & Atiq Ur Rehman, 2021. "Potential of Waste Cooking Oil Biodiesel as Renewable Fuel in Combustion Engines: A Review," Energies, MDPI, vol. 14(9), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    2. Cédric Decarpigny & Abdulhadi Aljawish & Cédric His & Bertrand Fertin & Muriel Bigan & Pascal Dhulster & Michel Millares & Rénato Froidevaux, 2022. "Bioprocesses for the Biodiesel Production from Waste Oils and Valorization of Glycerol," Energies, MDPI, vol. 15(9), pages 1-30, May.
    3. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    4. Mohd Fadzli Hamid & Yew Heng Teoh & Mohamad Yusof Idroas & Mazlan Mohamed & Shukriwani Sa’ad & Sharzali Che Mat & Muhammad Khalil Abdullah & Thanh Danh Le & Heoy Geok How & Huu Tho Nguyen, 2022. "A Review of the Emulsification Method for Alternative Fuels Used in Diesel Engines," Energies, MDPI, vol. 15(24), pages 1-26, December.
    5. Pamuluri, Vinod Kumar Naidu & Avulapati, Madan Mohan, 2024. "Effect of composition and temperature on the puffing and microexplosion of diesel-ethanol-jatropha oil ternary fuel blend droplets," Energy, Elsevier, vol. 308(C).
    6. Chao Jin & Juntong Dong & Chenyun Ding & Jingjing Hu & Zhenlong Geng & Xiaodan Li & Teng Xu & Guolong Zang & Haifeng Liu, 2024. "Effect of Different Preparation Methods on the Stability of Low-Carbon Alcohol Blended Fuels," Energies, MDPI, vol. 17(11), pages 1-13, June.
    7. Hu, Jiang & Abed, Azher M. & Talib, Zunirah Mohd & Alghassab, Mohammed A. & Abdullaev, Sherzod & Ghandour, Raymond & Hamlaoui, Oumayma & Alhomayani, Fahad M. & Dutta, Ashit Kumar & Jastaneyah, Zuhair, 2025. "Technical, economic, and environmental study with ANN-based optimization of a biomass-powered versatile/sustainable polygeneration system with carbon capture/utilization approach," Energy, Elsevier, vol. 315(C).
    8. Han, Kai & Lin, Qizhao & Liu, Minghou & Meng, Kesheng & Ni, Zhanshi & Liu, Yu & Tian, Junjian & Qiu, Zhicong, 2022. "Experimental study on the micro-explosion characteristics of biodiesel/1-pentanol and biodiesel/ methanol blended droplets," Renewable Energy, Elsevier, vol. 196(C), pages 261-277.
    9. Zhang, Yu & Huang, Ronghua & Huang, Yuhan & Huang, Sheng & Zhou, Pei & Chen, Xi & Qin, Tian, 2018. "Experimental study on combustion characteristics of an n-butanol-biodiesel droplet," Energy, Elsevier, vol. 160(C), pages 490-499.
    10. Rosli, Mohd A.F. & Aziz, A. Rashid A. & Ismael, Mhadi A. & Elbashir, Nimir O. & Zainal A., Ezrann Z. & Baharom, Masri & Mohammed, Salah E., 2021. "Experimental study of micro-explosion and puffing of gas-to-liquid (GTL) fuel blends by suspended droplet method," Energy, Elsevier, vol. 218(C).
    11. Vershinina, Ksenia Yu & Dorokhov, Vadim V. & Romanov, Daniil S. & Strizhak, Pavel A., 2022. "Combustion stages of waste-derived blends burned as pellets, layers, and droplets of slurry," Energy, Elsevier, vol. 251(C).
    12. Tariq Mahmood & Shahid Hassan & Abdullah Sheikh & Abdul Raheem & Ahad Hameed, 2022. "Experimental Investigations of Diesel Engine Performance Using Blends of Distilled Waste Cooking Oil Biodiesel with Diesel and Economic Feasibility of the Distilled Biodiesel," Energies, MDPI, vol. 15(24), pages 1-19, December.
    13. Han, Kai & Liu, Yu & Wang, Chengxin & Tian, Junjian & Song, Zhihui & Lin, Qizhao & Meng, Kesheng, 2021. "Experimental study on the evaporation characteristics of biodiesel-ABE blended droplets," Energy, Elsevier, vol. 236(C).
    14. Omar Aboelazayem & Mamdouh Gadalla & Basudeb Saha, 2022. "Comprehensive Optimisation of Biodiesel Production Conditions via Supercritical Methanolysis of Waste Cooking Oil," Energies, MDPI, vol. 15(10), pages 1-22, May.
    15. Mehmood Ali & Muhammad Shahid & Waseem Saeed & Shahab Imran & Md. Abul Kalam, 2023. "Design, Fabrication, and Operation of a 10 L Biodiesel Production Unit Powered by Conventional and Solar Energy Systems," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    16. Zhang, Jianan & Wang, Yuesen & Muldoon, Valerie L. & Deng, Sili, 2022. "Crude glycerol and glycerol as fuels and fuel additives in combustion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Wang, Jigang & Qiao, Xinqi & Ju, Dehao & Wang, Lintao & Sun, Chunhua, 2019. "Experimental study on the evaporation and micro-explosion characteristics of nanofuel droplet at dilute concentrations," Energy, Elsevier, vol. 183(C), pages 149-159.
    18. Ming-Chien Hsiao & Wei-Ting Lin & Wei-Cheng Chiu & Shuhn-Shyurng Hou, 2021. "Two-Stage Biodiesel Synthesis from Used Cooking Oil with a High Acid Value via an Ultrasound-Assisted Method," Energies, MDPI, vol. 14(12), pages 1-14, June.
    19. Tamás Mizik & Christian Barika Igbeghe & Zsuzsanna Deák, 2025. "Production Efficiency of Advanced Liquid Biofuels: Prospects and Challenges," Energies, MDPI, vol. 18(4), pages 1-18, February.
    20. Mario C. Maya-Rodriguez & Ignacio Carvajal-Mariscal & Raúl López-Muñoz & Mario A. Lopez-Pacheco & René Tolentino-Eslava, 2023. "Temperature Control of a Chemical Reactor Based on Neuro-Fuzzy Tuned with a Metaheuristic Technique to Improve Biodiesel Production," Energies, MDPI, vol. 16(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1692-:d:1622520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.