IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1686-d1622112.html
   My bibliography  Save this article

Wind Power Prediction Method and Outlook in Microtopographic Microclimate

Author

Listed:
  • Jia He

    (China Resources Power Technology and Research Institute Co., Ltd., Shenzhen 523808, China)

  • Fangchun Tang

    (China Resources Power Technology and Research Institute Co., Ltd., Shenzhen 523808, China)

  • Junxin Feng

    (China Resources Power Technology and Research Institute Co., Ltd., Shenzhen 523808, China)

  • Chaoyang Liu

    (China Resources New Energy (Lianzhou) Wind Energy Co., Ltd., Lianzhou 513444, China)

  • Mengyan Ni

    (China Resources New Energy (Liping) Wind Energy Co., Ltd., Liping 557300, China)

  • Youguang Chen

    (China Resources New Energy (Lianzhou) Wind Energy Co., Ltd., Lianzhou 513444, China)

  • Hongdeng Mei

    (China Resources New Energy (Liping) Wind Energy Co., Ltd., Liping 557300, China)

  • Qin Hu

    (Xuefeng Mountain National Field Scientific Observation and Research Station on Energy and Equipment Safety, Chongqing University, Chongqing 400044, China)

  • Xingliang Jiang

    (Xuefeng Mountain National Field Scientific Observation and Research Station on Energy and Equipment Safety, Chongqing University, Chongqing 400044, China)

Abstract

With the increase in installed capacity of wind turbines, the stable operation of the power system has been affected. Accurate prediction of wind power is an important condition to ensure the healthy development of the wind power industry and the safe operation of the power grid. This paper first introduces the current status of wind power prediction methods under normal weather, and introduces them in detail from three aspects: physical model method, statistical prediction method and combined prediction method. Then, from the perspectives of numerical simulation analysis and statistical prediction methods, the wind power prediction method under icy conditions is introduced, and the problems faced by the existing methods are pointed out. Then, the accurate prediction of wind power under icing weather is considered, and two possible research directions for wind power prediction under icy weather are proposed: a statistical prediction method for classifying and clustering wind turbines according to microtopography, combining large-scale meteorological parameters with small-scale meteorological parameter correlation models and using machine learning for cluster power prediction, and a power prediction model converted from the power prediction model during normal operation of the wind turbine to the power prediction model during icing. Finally, the research on wind power prediction under ice-covered weather is summarized, and further research in this area is prospected.

Suggested Citation

  • Jia He & Fangchun Tang & Junxin Feng & Chaoyang Liu & Mengyan Ni & Youguang Chen & Hongdeng Mei & Qin Hu & Xingliang Jiang, 2025. "Wind Power Prediction Method and Outlook in Microtopographic Microclimate," Energies, MDPI, vol. 18(7), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1686-:d:1622112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan, Xiaohui & Tan, Qingxiong & Lei, Xiaohui & Yuan, Yanbin & Wu, Xiaotao, 2017. "Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine," Energy, Elsevier, vol. 129(C), pages 122-137.
    2. Cassola, Federico & Burlando, Massimiliano, 2012. "Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output," Applied Energy, Elsevier, vol. 99(C), pages 154-166.
    3. Gao, Linyue & Tao, Tao & Liu, Yongqian & Hu, Hui, 2021. "A field study of ice accretion and its effects on the power production of utility-scale wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 917-928.
    4. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    5. De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Error analysis of short term wind power prediction models," Applied Energy, Elsevier, vol. 88(4), pages 1298-1311, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    2. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    3. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    4. Fu, Wenlong & Fang, Ping & Wang, Kai & Li, Zhenxing & Xiong, Dongzhen & Zhang, Kai, 2021. "Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and Volterra series model," Renewable Energy, Elsevier, vol. 179(C), pages 1122-1139.
    5. Vadim Manusov & Pavel Matrenin & Muso Nazarov & Svetlana Beryozkina & Murodbek Safaraliev & Inga Zicmane & Anvari Ghulomzoda, 2023. "Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-12, January.
    6. Li, Yanting & Wu, Zhenyu & Su, Yan, 2023. "Adaptive short-term wind power forecasting with concept drifts," Renewable Energy, Elsevier, vol. 217(C).
    7. Poncela, Marta & Poncela, Pilar & Perán, José Ramón, 2013. "Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting," Applied Energy, Elsevier, vol. 108(C), pages 349-362.
    8. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    9. Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
    10. López, Germánico & Arboleya, Pablo, 2022. "Short-term wind speed forecasting over complex terrain using linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador," Renewable Energy, Elsevier, vol. 183(C), pages 351-368.
    11. Hao Chen & Qiulan Wan & Yurong Wang, 2014. "Refined Diebold-Mariano Test Methods for the Evaluation of Wind Power Forecasting Models," Energies, MDPI, vol. 7(7), pages 1-14, July.
    12. Osório, G.J. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources," Energy, Elsevier, vol. 82(C), pages 949-959.
    13. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    14. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    15. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
    16. Alessandrini, S. & Sperati, S. & Pinson, P., 2013. "A comparison between the ECMWF and COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on real data," Applied Energy, Elsevier, vol. 107(C), pages 271-280.
    17. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    18. Zonggui Yao & Chen Wang, 2018. "A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting," Sustainability, MDPI, vol. 10(5), pages 1-33, May.
    19. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    20. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1686-:d:1622112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.