IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1638-d1619731.html
   My bibliography  Save this article

Numerical Investigations on the Effects of Inertia on the Startup Dynamics of a Multibladed Savonius Wind Turbine

Author

Listed:
  • Taimoor Asim

    (School of Computing, Engineering and Technology, Robert Gordon University, Aberdeen AB10 7GJ, UK)

  • Ityona Amber

    (School of Computing, Engineering and Technology, Robert Gordon University, Aberdeen AB10 7GJ, UK)

  • Dharminder Singh

    (Department of Mechanical Engineering, Glasgow Caledonian University, Glasgow G4 0BA, UK)

  • Muhammad Salman Siddiqui

    (Faculty of Science and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway)

Abstract

The startup dynamics of wind turbines have a direct impact on their cut-in speed and thus their capacity factor, considering highly transient winds in urban environments. Due to the complex nature of the startup dynamics, the published research on it is severely lacking. Unless the startup dynamics and cut-in speed of a wind turbine are known, it is difficult to evaluate its capacity factor and levelized cost of energy (LCoE) for commercial viability. In this study, a Savonius vertical-axis wind turbine (VAWT) has been considered and its startup dynamics evaluated using numerical techniques. Moreover, the effects of turbine inertia, arising from bearing frictional losses, generator load, etc., on the startup dynamics have been studied. Advanced computational fluid dynamics (CFD)-based solvers have been utilized for this purpose. The flow-induced rotation of the turbine blades has been modeled using a six degree of freedom (6DoF) approach. Turbine inertia has been modeled using the mass moment of inertia of the turbine rotor and systematically increased to mimic the additional inertia and losses due to bearings and the generator. The results indicate that inertia has a significant impact on the startup dynamics of the VAWT. It was observed that as the turbine inertia increased, it took longer for the turbine to reach its steady or peak operational speed. Increasing the inertia by 10%, 20% and 30% increased the time taken by the turbine to reach its peak rotational speed by 13.3%, 16.7% and 23.2%, respectively. An interesting observation from the results obtained is that an increase in turbine inertia does not change the peak rotational speed. For the Savonius rotor considered, the peak rotational speed remained 122 rpm, and its tip speed ratio (TSR) remained 0.6 while increasing the turbine inertia.

Suggested Citation

  • Taimoor Asim & Ityona Amber & Dharminder Singh & Muhammad Salman Siddiqui, 2025. "Numerical Investigations on the Effects of Inertia on the Startup Dynamics of a Multibladed Savonius Wind Turbine," Energies, MDPI, vol. 18(7), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1638-:d:1619731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1638/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1638/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Xuejing & Zhu, Jianyang & Li, Zongjin & Sun, Guoxing, 2021. "Rotation improvement of vertical axis wind turbine by offsetting pitching angles and changing blade numbers," Energy, Elsevier, vol. 215(PB).
    2. Taimoor Asim & Sheikh Zahidul Islam, 2021. "Effects of Damaged Rotor on Wake Dynamics of Vertical Axis Wind Turbines," Energies, MDPI, vol. 14(21), pages 1-27, October.
    3. Asr, Mahdi Torabi & Nezhad, Erfan Zal & Mustapha, Faizal & Wiriadidjaja, Surjatin, 2016. "Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils," Energy, Elsevier, vol. 112(C), pages 528-537.
    4. Cameron Gerrie & Sheikh Zahidul Islam & Sean Gerrie & Naomi Turner & Taimoor Asim, 2023. "3D CFD Modelling of Performance of a Vertical Axis Turbine," Energies, MDPI, vol. 16(3), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taimoor Asim & Dharminder Singh & M. Salman Siddiqui & Don McGlinchey, 2022. "Effect of Stator Blades on the Startup Dynamics of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 15(21), pages 1-19, October.
    2. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Muhammad Saif Ullah Khalid & David Wood & Arman Hemmati, 2022. "Self-Starting Characteristics and Flow-Induced Rotation of Single- and Dual-Stage Vertical-Axis Wind Turbines," Energies, MDPI, vol. 15(24), pages 1-19, December.
    4. Celik, Yunus & Ingham, Derek & Ma, Lin & Pourkashanian, Mohamed, 2022. "Design and aerodynamic performance analyses of the self-starting H-type VAWT having J-shaped aerofoils considering various design parameters using CFD," Energy, Elsevier, vol. 251(C).
    5. Elkhoury, M. & Kiwata, T. & Nagao, K. & Kono, T. & ElHajj, F., 2018. "Wind tunnel experiments and Delayed Detached Eddy Simulation of a three-bladed micro vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 63-74.
    6. Huang, Huilan & Luo, Jiabin & Li, Gang, 2023. "Study on the optimal design of vertical axis wind turbine with novel variable solidity type for self-starting capability and aerodynamic performance," Energy, Elsevier, vol. 271(C).
    7. Mustafa Özden & Mustafa Serdar Genç & Kemal Koca, 2023. "Passive Flow Control Application Using Single and Double Vortex Generator on S809 Wind Turbine Airfoil," Energies, MDPI, vol. 16(14), pages 1-17, July.
    8. Kang, Can & Wang, Zhiyuan & Kim, Hyoung-Bum & Shao, Chunbing, 2023. "Effects of solidity on startup performance and flow characteristics of a vertical-axis hydrokinetic rotor with three helical blades," Renewable Energy, Elsevier, vol. 218(C).
    9. Shen, He & Ruiz, Alexis & Li, Ni, 2023. "Fast online reinforcement learning control of small lift-driven vertical axis wind turbines with an active programmable four bar linkage mechanism," Energy, Elsevier, vol. 262(PA).
    10. Kumail Abdulkareem Hadi Al-Gburi & Firas Basim Ismail Alnaimi & Balasem Abdulameer Jabbar Al-quraishi & Ee Sann Tan & Ali Kamil Kareem, 2023. "Enhancing Savonius Vertical Axis Wind Turbine Performance: A Comprehensive Approach with Numerical Analysis and Experimental Investigations," Energies, MDPI, vol. 16(10), pages 1-23, May.
    11. Shen, Zhuang & Gong, Shuguang & Zu, Hongxiao & Guo, Weiyu, 2024. "Multi-objective optimization study on the performance of double Darrieus hybrid vertical axis wind turbine based on DOE-RSM and MOPSO-MODM," Energy, Elsevier, vol. 299(C).
    12. Wei Zhang & Sifan Yang & Cheng Chen & Lang Li, 2023. "Analysis of the Effects of Fluctuating Wind on the Aerodynamic Performance of a Vertical-Axis Wind Turbine with Variable Pitch," Energies, MDPI, vol. 16(20), pages 1-21, October.
    13. Qiang Gao & Shuai Lian & Hongwei Yan, 2022. "Aerodynamic Performance Analysis of Adaptive Drag-Lift Hybrid Type Vertical Axis Wind Turbine," Energies, MDPI, vol. 15(15), pages 1-15, August.
    14. Tong, Guoqiang & Yang, Shengbing & Li, Yan & Feng, Fang, 2023. "Effects of blade tip flow on aerodynamic characteristics of straight-bladed vertical axis wind turbines," Energy, Elsevier, vol. 283(C).
    15. Shen, Zhuang & Gong, Shuguang & Xie, Guilan & Lu, Haishan & Guo, Weiyu, 2024. "Investigation of the effect of critical structural parameters on the aerodynamic performance of the double darrieus vertical axis wind turbine," Energy, Elsevier, vol. 290(C).
    16. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
    18. Sun, Xuejing & Zhu, Jianyang & Li, Zongjin & Sun, Guoxing, 2021. "Rotation improvement of vertical axis wind turbine by offsetting pitching angles and changing blade numbers," Energy, Elsevier, vol. 215(PB).
    19. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Zhiqiang, Li & Yunke, Wu & Jie, Hong & Zhihong, Zhang & Wenqi, Chen, 2018. "The study on performance and aerodynamics of micro counter-rotating HAWT," Energy, Elsevier, vol. 161(C), pages 939-954.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1638-:d:1619731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.