IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1630-d1619517.html
   My bibliography  Save this article

Logarithmic Mean Divisia Index Analysis and Dynamic Back Propagation Neural Network Prediction of Transport Carbon Emissions in Henan Province

Author

Listed:
  • Changjiang Mao

    (School of Automobile and Transportation, Xihua University, Chengdu 610039, China)

  • Jian Luo

    (School of Automobile and Transportation, Xihua University, Chengdu 610039, China)

  • Shengyang Jiao

    (School of Automobile and Transportation, Xihua University, Chengdu 610039, China)

  • Bin Zhao

    (School of Automobile and Transportation, Xihua University, Chengdu 610039, China)

Abstract

Amid escalating global concerns over climate change and sustainable development, carbon emissions have emerged as a critical issue for the international community. The control of carbon dioxide (CO 2 ) emissions is particularly crucial for meeting the objectives of the Paris Agreement. This study applied the LMDI decomposition method and a BP neural network model to thoroughly analyse the factors influencing carbon emissions in Henan Province’s transportation sector and forecast future trends. Our core contribution is the development of an integrated model that quantifies the impact of key factors on carbon emissions and offers policy recommendations. This study concludes that by optimizing the energy structure and enhancing energy efficiency, China can meet its carbon peak and neutrality targets, thereby providing scientific guidance for sustainable regional development.

Suggested Citation

  • Changjiang Mao & Jian Luo & Shengyang Jiao & Bin Zhao, 2025. "Logarithmic Mean Divisia Index Analysis and Dynamic Back Propagation Neural Network Prediction of Transport Carbon Emissions in Henan Province," Energies, MDPI, vol. 18(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1630-:d:1619517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    2. Shuohua Zhang & Hanning Dong & Can Lu & Wei Li, 2023. "Carbon Emission Projection and Carbon Quota Allocation in the Beijing–Tianjin–Hebei Region of China under Carbon Neutrality Vision," Sustainability, MDPI, vol. 15(21), pages 1-29, October.
    3. Kristiāna Dolge & Dagnija Blumberga, 2021. "Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry: LMDI Decomposition Analysis," Energies, MDPI, vol. 14(23), pages 1-23, November.
    4. McKibbin, Warwick J. & Pearce, David & Stegman, Alison, 2007. "Long term projections of carbon emissions," International Journal of Forecasting, Elsevier, vol. 23(4), pages 637-653.
    5. Song Wang & Yixiao Wang & Chenxin Zhou & Xueli Wang, 2022. "Projections in Various Scenarios and the Impact of Economy, Population, and Technology for Regional Emission Peak and Carbon Neutrality in China," IJERPH, MDPI, vol. 19(19), pages 1-31, September.
    6. Chang, Lei & Mohsin, Muhammad & Hasnaoui, Amir & Taghizadeh-Hesary, Farhad, 2023. "Exploring carbon dioxide emissions forecasting in China: A policy-oriented perspective using projection pursuit regression and machine learning models," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    7. Shujaat Abbas & Hazrat Yousaf & Shabeer Khan & Mohd Ziaur Rehman & Dmitri Blueschke, 2023. "Analysis and Projection of Transport Sector Demand for Energy and Carbon Emission: An Application of the Grey Model in Pakistan," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    8. Ding, Qi & Xiao, Xinping & Kong, Dekai, 2023. "Estimating energy-related CO2 emissions using a novel multivariable fuzzy grey model with time-delay and interaction effect characteristics," Energy, Elsevier, vol. 263(PE).
    9. Chenxi Gao & Qingping Hu & Lingxin Bao, 2024. "Inventory, Dynamic Evolution, and Scenario Projections of Agricultural Carbon Emissions in Shandong Province, China," Sustainability, MDPI, vol. 16(8), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenhao Qi & Changxing Song & Meng Sun & Liguo Wang & Youcheng Han, 2022. "Sustainable Growth Drivers: Unveiling the Role Played by Carbon Productivity," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    2. Huicai Yang & Shuqin Zhao & Zhanfei Qin & Zhiguo Qi & Xinying Jiao & Zhen Li, 2024. "Differentiation of Carbon Sink Enhancement Potential in the Beijing–Tianjin–Hebei Region of China," Land, MDPI, vol. 13(3), pages 1-15, March.
    3. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    4. Jing Bai & Chuang Tu & Jiming Bai, 2024. "Measuring and decomposing Beijing’s energy performance: an energy- and exergy-based perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17617-17633, July.
    5. Yan Li & Yigang Wei & Hanxiao Xu & Huanwen Liu & Julien Chevallier, 2023. "Carbon monoxide and multi‐pollutants flow between China and India: A multiregional input–output model," The World Economy, Wiley Blackwell, vol. 46(8), pages 2514-2537, August.
    6. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    7. Juan Luo & Chong Xu & Boyu Yang & Xiaoyu Chen & Yinyin Wu, 2022. "Quantitative Analysis of China’s Carbon Emissions Trading Policies: Perspectives of Policy Content Validity and Carbon Emissions Reduction Effect," Energies, MDPI, vol. 15(14), pages 1-20, July.
    8. Shengling Lin & Yi Zou & Yanhu He & Shiyu Xue & Lirong Zhu & Changqing Ye, 2025. "A Spatiotemporal Dynamic Evaluation of Soil Erosion at a Monthly Scale and the Identification of Driving Factors in Hainan Island Based on the Chinese Soil Loss Equation Model," Sustainability, MDPI, vol. 17(6), pages 1-28, March.
    9. Román-Collado, Rocío & Colinet, María José, 2018. "Are labour productivity and residential living standards drivers of the energy consumption changes?," Energy Economics, Elsevier, vol. 74(C), pages 746-756.
    10. Jiandong Chen & Ping Wang & Jixian Zhou & Malin Song & Xinyue Zhang, 2022. "Influencing factors and efficiency of funds in humanitarian supply chains: the case of Chinese rural minimum living security funds," Annals of Operations Research, Springer, vol. 319(1), pages 413-438, December.
    11. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    12. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    13. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    14. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    15. Zhou, P. & Zhang, H. & Zhang, L.P., 2022. "The drivers of energy intensity changes in Chinese cities: A production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 307(C).
    16. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    17. Baležentis, Tomas & Li, Tianxiang & Chen, Xueli, 2021. "Has agricultural labor restructuring improved agricultural labor productivity in China? A decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    18. Di Peng & Haibin Liu, 2022. "Measurement and Driving Factors of Carbon Emissions from Coal Consumption in China Based on the Kaya-LMDI Model," Energies, MDPI, vol. 16(1), pages 1-19, December.
    19. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
    20. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1630-:d:1619517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.