IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1538-d1616359.html
   My bibliography  Save this article

Assessment of the Risks Associated with the Handling and Transportation of Air Shipments Containing Lithium-Ion Batteries

Author

Listed:
  • Anna Kwasiborska

    (Faculty of Transport, Warsaw University of Technology, Koszykowa Street 75, 00-662 Warsaw, Poland)

  • Sylwia Ścigaj

    (Faculty of Transport, Warsaw University of Technology, Koszykowa Street 75, 00-662 Warsaw, Poland)

Abstract

Air transport, in addition to passenger transport, also transports air shipments containing hazardous materials. Hazardous materials include lithium-ion batteries, which can be carried both by passengers and by cargo aircraft. Due to the dynamic development of lithium-ion power supply technology, many devices are equipped with batteries that threaten air traffic safety. The article presents the results of research based on FAA reports of incidents involving lithium-ion batteries. The article aims to present a risk assessment for transporting lithium-ion batteries. Due to the emergence of new devices containing batteries, it is essential to analyze their transport to minimize threats and eliminate aviation incidents. The observations and the analysis of FAA reports showed possible threats from the transport of lithium-ion batteries on board aircraft. The matrix method used indicated the level of risk of transporting lithium-ion batteries. The risk assessment showed the need to monitor or implement corrective actions while transporting flight-ion batteries. Possible solutions were also presented to increase the safety level of transporting lithium-ion batteries.

Suggested Citation

  • Anna Kwasiborska & Sylwia Ścigaj, 2025. "Assessment of the Risks Associated with the Handling and Transportation of Air Shipments Containing Lithium-Ion Batteries," Energies, MDPI, vol. 18(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1538-:d:1616359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1538/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1538/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Z.Y. & Qu, Z.G. & Zhang, J.F. & Rao, Z.H., 2020. "Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy," Applied Energy, Elsevier, vol. 268(C).
    2. Kuo Wang & Dongxu Ouyang & Xinming Qian & Shuai Yuan & Chongye Chang & Jianqi Zhang & Yifan Liu, 2023. "Early Warning Method and Fire Extinguishing Technology of Lithium-Ion Battery Thermal Runaway: A Review," Energies, MDPI, vol. 16(7), pages 1-35, March.
    3. Sofia Ubaldi & Marco Conti & Francesco Marra & Paola Russo, 2023. "Identification of Key Events and Emissions during Thermal Abuse Testing on NCA 18650 Cells," Energies, MDPI, vol. 16(7), pages 1-21, April.
    4. Agnieszka Iwan & Krzysztof A. Bogdanowicz & Robert Pich & Agnieszka Gonciarz & Jacek Miedziak & Ireneusz Plebankiewicz & Wojciech Przybyl, 2025. "The Safety Engineering of Sodium-Ion Batteries Used as an Energy Storage System for the Military," Energies, MDPI, vol. 18(4), pages 1-35, February.
    5. Ping, Ping & Wang, Qingsong & Chung, Youngmann & Wen, Jennifer, 2017. "Modelling electro-thermal response of lithium-ion batteries from normal to abuse conditions," Applied Energy, Elsevier, vol. 205(C), pages 1327-1344.
    6. Chikha, Paulina & Skorupski, Jacek, 2022. "The risk of an airport traffic accident in the context of the ground handling personnel performance," Journal of Air Transport Management, Elsevier, vol. 105(C).
    7. Ting Quan & Qi Xia & Xiaoyu Wei & Yanli Zhu, 2024. "Recent Development of Thermal Insulating Materials for Li-Ion Batteries," Energies, MDPI, vol. 17(17), pages 1-37, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
    2. Chen, Jie & Ren, Dongsheng & Hsu, Hungjen & Wang, Li & He, Xiangming & Zhang, Caiping & Feng, Xuning & Ouyang, Minggao, 2021. "Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model," Applied Energy, Elsevier, vol. 295(C).
    3. Daniels, Rojo Kurian & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Thermal runaway fault prediction in air-cooled lithium-ion battery modules using machine learning through temperature sensors placement optimization," Applied Energy, Elsevier, vol. 355(C).
    4. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Yuan, Yuhang & Wang, Chun & Ye, Yintong & Huang, Yao & Qiu, Zhiqiang & Tang, Yong, 2020. "Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries," Applied Energy, Elsevier, vol. 257(C).
    5. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    6. Deng, Jian & Huang, Qiqiu & Li, Xinxi & Zhang, Guoqing & Li, Canbing & Li, Songbo, 2024. "Influence mechanism of battery thermal management with flexible flame retardant composite phase change materials by temperature aging," Renewable Energy, Elsevier, vol. 222(C).
    7. Wu, Chunxia & Sun, Yalong & Tang, Heng & Zhang, Shiwei & Yuan, Wei & Zhu, Likuan & Tang, Yong, 2024. "A review on the liquid cooling thermal management system of lithium-ion batteries," Applied Energy, Elsevier, vol. 375(C).
    8. Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).
    9. Ding, Xiaofeng & Zhang, Donghuai & Cheng, Jiawei & Wang, Binbin & Luk, Patrick Chi Kwong, 2019. "An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles," Applied Energy, Elsevier, vol. 254(C).
    10. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Ouyang, Nan & Zhang, Wencan & Yin, Xiuxing & Li, Xingyao & Xie, Yi & He, Hancheng & Long, Zhuoru, 2023. "A data-driven method for predicting thermal runaway propagation of battery modules considering uncertain conditions," Energy, Elsevier, vol. 273(C).
    12. Hu, Dunan & Huang, Sheng & Wen, Zhen & Gu, Xiuquan & Lu, Jianguo, 2024. "A review on thermal runaway warning technology for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    13. Fan Zhang & Xiao Zheng & Zixuan Xing & Minghu Wu, 2024. "Fault Diagnosis Method for Lithium-Ion Power Battery Incorporating Multidimensional Fault Features," Energies, MDPI, vol. 17(7), pages 1-21, March.
    14. Chen, Siqi & Wei, Xuezhe & Zhang, Guangxu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Dai, Haifeng & Ouyang, Minggao, 2023. "Active and passive safety enhancement for batteries from force perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Sevgi Aydın & Umut Ege Samancıoğlu & İsmail Hakkı Savcı & Kadri Süleyman Yiğit & Erdal Çetkin, 2025. "Impact of Cooling Strategies and Cell Housing Materials on Lithium-Ion Battery Thermal Management Performance," Energies, MDPI, vol. 18(6), pages 1-18, March.
    16. Chen, Quanyi & Zhang, Xuan & Nie, Pengbo & Zhang, Siwei & Wei, Guodan & Sun, Hongbin, 2023. "A fast thermal simulation and dynamic feedback control framework for lithium-ion batteries," Applied Energy, Elsevier, vol. 350(C).
    17. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    18. Li, Marui & Dong, Chaoyu & Xiong, Binyu & Mu, Yunfei & Yu, Xiaodan & Xiao, Qian & Jia, Hongjie, 2022. "STTEWS: A sequential-transformer thermal early warning system for lithium-ion battery safety," Applied Energy, Elsevier, vol. 328(C).
    19. Zhang, Wencan & Ouyang, Nan & Yin, Xiuxing & Li, Xingyao & Wu, Weixiong & Huang, Liansheng, 2022. "Data-driven early warning strategy for thermal runaway propagation in Lithium-ion battery modules with variable state of charge," Applied Energy, Elsevier, vol. 323(C).
    20. Yu, Hanqing & Zhang, Lisheng & Wang, Wentao & Li, Shen & Chen, Siyan & Yang, Shichun & Li, Junfu & Liu, Xinhua, 2023. "State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries," Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1538-:d:1616359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.