IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1245-d1604708.html
   My bibliography  Save this article

Optimization of Sizing of Battery Energy Storage System for Residential Households by Load Forecasting with Artificial Intelligence (AI): Case of EV Charging Installation

Author

Listed:
  • Nopphamat Promasa

    (Department of Electrical Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Suvarnabhumi (RUS), Nonthaburi 11000, Thailand)

  • Ekawit Songkoh

    (Department of Industrial Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Suvarnabhumi (RUS), Phra Nakhon Si Ayutthaya 13000, Thailand)

  • Siamrat Phonkaphon

    (Department of Electrical Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Suvarnabhumi (RUS), Nonthaburi 11000, Thailand)

  • Karun Sirichunchuen

    (Department of Electrical Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Suvarnabhumi (RUS), Nonthaburi 11000, Thailand)

  • Chaliew Ketkaew

    (Department of Electrical Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Suvarnabhumi (RUS), Nonthaburi 11000, Thailand)

  • Pramuk Unahalekhaka

    (Department of Electrical Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Suvarnabhumi (RUS), Nonthaburi 11000, Thailand)

Abstract

This paper presents the optimization sizing of a battery energy storage system for residential use from load forecasting using AI. The solar rooftop panel installation and charging systems for electric vehicles are connected to the low-voltage electrical system of the Metropolitan Electricity Authority (MEA). The daily electricity demand for future load forecasting used the long short-term memory (LSTM) technique in order to analyze the appropriate size of the battery energy storage system (BESS) for residences. The solar rooftop installation capacity is 5.5 kWp, which produces an average of 28.78 kWh/day. The minimum actual daily load in a month is 67.04 kWh, comprising the base load and the load from charging electric vehicles, which can determine the size of the battery energy storage system as 21.03 kWh. For this research, load forecasting will be presented to find the appropriate size of BESS by considering the minimum daily load over the month, which is equal to 102.67 kWh, which can determine the size of the BESS to be 17.84 kWh. When comparing the size of BESS from actual load values with the load from the forecast, it can significantly reduce the size and cost of BESS.

Suggested Citation

  • Nopphamat Promasa & Ekawit Songkoh & Siamrat Phonkaphon & Karun Sirichunchuen & Chaliew Ketkaew & Pramuk Unahalekhaka, 2025. "Optimization of Sizing of Battery Energy Storage System for Residential Households by Load Forecasting with Artificial Intelligence (AI): Case of EV Charging Installation," Energies, MDPI, vol. 18(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1245-:d:1604708
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neaimeh, Myriam & Wardle, Robin & Jenkins, Andrew M. & Yi, Jialiang & Hill, Graeme & Lyons, Padraig F. & Hübner, Yvonne & Blythe, Phil T. & Taylor, Phil C., 2015. "A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts," Applied Energy, Elsevier, vol. 157(C), pages 688-698.
    2. Ke Li & Kai Wang & Chenyang Tang & Yue Pan & Yufei He & Shaobin Cai & Suidong Chen & Yuhui Zhou, 2024. "Prediction of Key Development Indicators for Offshore Oilfields Based on Artificial Intelligence," Energies, MDPI, vol. 17(18), pages 1-22, September.
    3. Padraigh Jarvis & Laura Climent & Alejandro Arbelaez, 2024. "Smart and sustainable scheduling of charging events for electric buses," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 22-56, April.
    4. Bing Liu & Jichong Lei & Jinsen Xie & Jianliang Zhou, 2022. "Development and Validation of a Nuclear Power Plant Fault Diagnosis System Based on Deep Learning," Energies, MDPI, vol. 15(22), pages 1-15, November.
    5. Xiangming Kong & Yuetian Liu & Liang Xue & Guanlin Li & Dongdong Zhu, 2023. "A Hybrid Oil Production Prediction Model Based on Artificial Intelligence Technology," Energies, MDPI, vol. 16(3), pages 1-16, January.
    6. Daeil Lee & Seoryong Koo & Inseok Jang & Jonghyun Kim, 2022. "Comparison of Deep Reinforcement Learning and PID Controllers for Automatic Cold Shutdown Operation," Energies, MDPI, vol. 15(8), pages 1-25, April.
    7. Mustafa Najat Asaad & Şule Eryürük & Kağan Eryürük, 2022. "Forecasting of Streamflow and Comparison of Artificial Intelligence Methods: A Case Study for Meram Stream in Konya, Turkey," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    8. Chandra Mouli, G.R. & Bauer, P. & Zeman, M., 2016. "System design for a solar powered electric vehicle charging station for workplaces," Applied Energy, Elsevier, vol. 168(C), pages 434-443.
    9. Hasan Alkahtani & Theyazn H. H. Aldhyani & Saleh Nagi Alsubari, 2023. "Application of Artificial Intelligence Model Solar Radiation Prediction for Renewable Energy Systems," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    10. Der-Jang Chi & Chien-Chou Chu, 2021. "Artificial Intelligence in Corporate Sustainability: Using LSTM and GRU for Going Concern Prediction," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    2. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Li, Shaojie & Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2023. "Building-centric investigation into electric vehicle behavior: A survey-based simulation method for charging system design," Energy, Elsevier, vol. 271(C).
    3. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    4. Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
    5. Bulent Haznedar & Huseyin Cagan Kilinc & Furkan Ozkan & Adem Yurtsever, 2023. "Streamflow forecasting using a hybrid LSTM-PSO approach: the case of Seyhan Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 681-701, May.
    6. Ahmad Almaghrebi & Kevin James & Fares Al Juheshi & Mahmoud Alahmad, 2024. "Insights into Household Electric Vehicle Charging Behavior: Analysis and Predictive Modeling," Energies, MDPI, vol. 17(4), pages 1-20, February.
    7. Aminu Bugaje & Mathias Ehrenwirth & Christoph Trinkl & Wilfried Zörner, 2021. "Electric Two-Wheeler Vehicle Integration into Rural Off-Grid Photovoltaic System in Kenya," Energies, MDPI, vol. 14(23), pages 1-27, November.
    8. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    9. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    10. Beichen Zhao & Binshan Ju & Chaoxiang Wang, 2023. "Initial-Productivity Prediction Method of Oil Wells for Low-Permeability Reservoirs Based on PSO-ELM Algorithm," Energies, MDPI, vol. 16(11), pages 1-17, June.
    11. Good, Clara & Shepero, Mahmoud & Munkhammar, Joakim & Boström, Tobias, 2019. "Scenario-based modelling of the potential for solar energy charging of electric vehicles in two Scandinavian cities," Energy, Elsevier, vol. 168(C), pages 111-125.
    12. Thamer Alquthami & Abdullah Alsubaie & Mohannad Alkhraijah & Khalid Alqahtani & Saad Alshahrani & Murad Anwar, 2022. "Investigating the Impact of Electric Vehicles Demand on the Distribution Network," Energies, MDPI, vol. 15(3), pages 1-18, February.
    13. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    14. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    15. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    16. Khaleghikarahrodi, Mehrsa & Macht, Gretchen A., 2023. "Patterns, no patterns, that is the question: Quantifying users’ electric vehicle charging," Transport Policy, Elsevier, vol. 141(C), pages 291-304.
    17. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Benedetto Aluisio & Maria Dicorato & Imma Ferrini & Giuseppe Forte & Roberto Sbrizzai & Michele Trovato, 2019. "Optimal Sizing Procedure for Electric Vehicle Supply Infrastructure Based on DC Microgrid with Station Commitment," Energies, MDPI, vol. 12(10), pages 1-19, May.
    19. Katundu Imasiku & Valerie M. Thomas, 2020. "The Mining and Technology Industries as Catalysts for Sustainable Energy Development," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    20. George-Williams, H. & Wade, N. & Carpenter, R.N., 2022. "A probabilistic framework for the techno-economic assessment of smart energy hubs for electric vehicle charging," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1245-:d:1604708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.