IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1217-d1603752.html
   My bibliography  Save this article

Multi-Physics Numerical Research in Oil-Immersed Three-Phase Transformer Under Load Unbalance

Author

Listed:
  • Guanxun Diao

    (State Grid Shanghai Municipal Electrical Power Company, Shanghai 200122, China)

  • Heli Ni

    (State Grid Shanghai Municipal Electrical Power Company, Shanghai 200122, China)

  • Wenrong Si

    (State Grid Shanghai Municipal Electrical Power Company, Shanghai 200122, China)

  • Yingjie Gu

    (MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Jian Yang

    (MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Transformers are susceptible to the influences of complex power grid systems, which may induce three-phase unbalance in transformers, thereby threatening their safety and stable operation. To better understand multiphysics interactions within a transformer under a three-phase load unbalance, a coupled multiphysics model is established and validated for an oil-immersed transformer based on the finite element method. The electromagnetic characteristics, conjugate heat transfer, and thermal stress of the transformer under three-phase load unbalance are analyzed, and the impact on the transformer’s relative aging rate is further assessed. The results show that under three-phase load unbalance, winding losses are significantly influenced by the degree of unbalance, while core losses remain almost unaffected. The maximum difference in winding losses between phases can reach 9.6 times, with a total loss increase of approximately 17.31% at a 30% unbalance degree for Case 3. The mutual heating effect between adjacent windings intensifies with the degree of unbalance, leading to higher temperatures in low-loss windings and sustaining high thermal stress and expansion. Severe three-phase unbalance (e.g., 30% unbalance degree in Case 3) can be mitigated by reducing the transformer load rate to 90%, thereby reducing the relative aging rate to about 20% of that under full load and significantly extending the transformer’s insulation life.

Suggested Citation

  • Guanxun Diao & Heli Ni & Wenrong Si & Yingjie Gu & Jian Yang, 2025. "Multi-Physics Numerical Research in Oil-Immersed Three-Phase Transformer Under Load Unbalance," Energies, MDPI, vol. 18(5), pages 1-34, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1217-:d:1603752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed S. Seddik & Magdy B. Eteiba & Jehan Shazly, 2024. "Evaluating the Harmonic Effects on the Thermal Performance of a Power Transformer," Energies, MDPI, vol. 17(19), pages 1-17, September.
    2. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    3. Zikuo Dai & Kejian Shi & Yidong Zhu & Xinyu Zhang & Yanhong Luo, 2023. "Intelligent Prediction of Transformer Loss for Low Voltage Recovery in Distribution Network with Unbalanced Load," Energies, MDPI, vol. 16(11), pages 1-19, May.
    4. Chien-Kuo Chang & Shih-Tang Cheng & Bharath-Kumar Boyanapalli, 2022. "Three-Phase Unbalance Improvement for Distribution Systems Based on the Particle Swarm Current Injection Algorithm," Energies, MDPI, vol. 15(9), pages 1-16, May.
    5. Jia, Xiaoyu & Lin, Mei & Su, Shiwei & Wang, Qiuwang & Yang, Jian, 2022. "Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer," Energy, Elsevier, vol. 239(PA).
    6. Bonginkosi A. Thango & Pitshou N. Bokoro, 2022. "A Novel Approach to Predict Transformer Temperature Rise under Harmonic Load Current Conditions," Energies, MDPI, vol. 15(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baitong Zhai & Dongsheng Yang & Bowen Zhou & Guangdi Li, 2024. "Distribution System State Estimation Based on Power Flow-Guided GraphSAGE," Energies, MDPI, vol. 17(17), pages 1-15, August.
    2. Grzegorz Hołdyński & Zbigniew Skibko & Wojciech Walendziuk, 2024. "Power and Energy Losses in Medium-Voltage Power Grids as a Function of Current Asymmetry—An Example from Poland," Energies, MDPI, vol. 17(15), pages 1-18, July.
    3. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2023. "The Environmental Impact of Changes in the Structure of Electricity Sources in Europe," Energies, MDPI, vol. 16(1), pages 1-22, January.
    4. B. Koti Reddy & Amit Kumar Singh, 2021. "Optimal Operation of a Photovoltaic Integrated Captive Cogeneration Plant with a Utility Grid Using Optimization and Machine Learning Prediction Methods," Energies, MDPI, vol. 14(16), pages 1-28, August.
    5. Menghwar, Mohan & Yan, Jie & Chi, Yongning & Asim Amin, M. & Liu, Yongqian, 2024. "A market-based real-time algorithm for congestion alleviation incorporating EV demand response in active distribution networks," Applied Energy, Elsevier, vol. 356(C).
    6. Luka Budin & Ninoslav Holjevac & Matija Zidar & Marko Delimar, 2023. "PV Sizing and Investment Support Tool for Household Installations: A Case Study for Croatia," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    7. Nascimento, Viviane Tavares & Gimenes, Patricia Albuquerque & Morales Udaeta, Miguel Edgar & Veiga Gimenes, André L. & Riboldi, Victor Baiochi & Ji, Tuo, 2023. "Transition mapping for modern energy service provision under uncertainty: A case study from Brazil," Utilities Policy, Elsevier, vol. 84(C).
    8. Mariano G. Ippolito & Fabio Massaro & Rossano Musca & Gaetano Zizzo, 2021. "An Original Control Strategy of Storage Systems for the Frequency Stability of Autonomous Grids with Renewable Power Generation," Energies, MDPI, vol. 14(15), pages 1-22, July.
    9. Wang, Bo & Jia, Xiaoyu & Yang, Jian & Wang, Qiuwang, 2022. "Numerical study on temperature rise and structure optimization for a three-phase gas insulated switchgear busbar chamber," Energy, Elsevier, vol. 254(PC).
    10. Rogkas, N. & Karampasakis, E. & Fotopoulou, M. & Rakopoulos, D., 2024. "Assessment of heat transfer mechanisms of a novel high-frequency inductive power transfer system and coupled simulation using FEA," Energy, Elsevier, vol. 300(C).
    11. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    12. Tariq Kamal & Syed Zulqadar Hassan, 2023. "Special Issue “Applications of Advanced Control and Optimization Paradigms in Renewable Energy Systems”," Energies, MDPI, vol. 16(22), pages 1-4, November.
    13. Cheng, Shucan & Zhao, Yanpu & Xie, Kejia & Hu, Bin & Zhang, Jinxian & Yang, Xingxiong, 2024. "A novel method for fast computation of the temperature rise and optimal design of GIL based on thermal network model," Energy, Elsevier, vol. 289(C).
    14. Anna Marciniuk-Kluska & Mariusz Kluska, 2023. "Forecasting Energy Recovery from Municipal Waste in a Closed-Loop Economy," Energies, MDPI, vol. 16(6), pages 1-15, March.
    15. Nan Zhu & Ji Li & Lei Shao & Hongli Liu & Lei Ren & Lihua Zhu, 2023. "Analysis of Interturn Faults on Transformer Based on Electromagnetic-Mechanical Coupling," Energies, MDPI, vol. 16(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1217-:d:1603752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.