IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3460-d811702.html
   My bibliography  Save this article

Three-Phase Unbalance Improvement for Distribution Systems Based on the Particle Swarm Current Injection Algorithm

Author

Listed:
  • Chien-Kuo Chang

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan)

  • Shih-Tang Cheng

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan)

  • Bharath-Kumar Boyanapalli

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei City 106, Taiwan)

Abstract

The aim of this study is to improve the three-phase unbalanced voltage at the secondary side of a distribution transformer. The proposed method involves compensation sources injecting three different single-phase currents into the connected point of a grid. The computations of optimal single-phase currents are performed using the circuit analysis method and particle swarm optimization algorithm. An unbalanced three-phase power distribution system model is constructed, including a transformer Δ–Δ connection, V–V connection, load balance, load unbalance combination, and three single-phase compensation current sources. The results show that the voltage unbalance rate of the electricity user side is improved to less than 1%, and the three-phase total compensation apparent power is approximately 0 VA. In the future, the application of the model as an auxiliary service could be achieved by adding an energy storage system.

Suggested Citation

  • Chien-Kuo Chang & Shih-Tang Cheng & Bharath-Kumar Boyanapalli, 2022. "Three-Phase Unbalance Improvement for Distribution Systems Based on the Particle Swarm Current Injection Algorithm," Energies, MDPI, vol. 15(9), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3460-:d:811702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3460/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3460/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yih-Der Lee & Jheng-Lun Jiang & Yuan-Hsiang Ho & Wei-Chen Lin & Hsin-Ching Chih & Wei-Tzer Huang, 2020. "Neutral Current Reduction in Three-Phase Four-Wire Distribution Feeders by Optimal Phase Arrangement Based on a Full-Scale Net Load Model Derived from the FTU Data," Energies, MDPI, vol. 13(7), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    2. Yih-Der Lee & Wei-Chen Lin & Jheng-Lun Jiang & Jia-Hao Cai & Wei-Tzer Huang & Kai-Chao Yao, 2021. "Optimal Individual Phase Voltage Regulation Strategies in Active Distribution Networks with High PV Penetration Using the Sparrow Search Algorithm," Energies, MDPI, vol. 14(24), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3460-:d:811702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.