IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipcs0360544222013664.html
   My bibliography  Save this article

Numerical study on temperature rise and structure optimization for a three-phase gas insulated switchgear busbar chamber

Author

Listed:
  • Wang, Bo
  • Jia, Xiaoyu
  • Yang, Jian
  • Wang, Qiuwang

Abstract

In order to improve the simulation accuracy of the temperature rise, reduce the operating temperature, and improve the insulation performance of the gas insulated switchgear (GIS) busbar, this paper numerically studied a 252 kV three-phase GIS busbar chamber based on multiphysics coupling method. Various factors affecting busbar electromagnetic loss are analyzed, and the busbar structure is optimized combined with the Taguchi method. Firstly, the loss computational results show that, both skin effect and proximity effect change the conductor current distribution, the skin effect increases the GIS loss by 18.59 W/m (12.2%), and the proximity effect has little effect on the loss. The additional heat loss caused by conductor temperature rise cannot be ignored (13.2%). Secondly, Taguchi performance statistics show that, the conductor thickness (δ) and center distance (d0) have the greatest impact on the maximum temperature and minimum gas breakdown margin of GIS busbar, respectively, with the contribution rate of 80.2% and 65.1%, respectively. Finally, the optimal design parameter combinations with lowest operating temperature and best insulation performance for GIS busbar chamber are obtained with Taguchi method, respectively.

Suggested Citation

  • Wang, Bo & Jia, Xiaoyu & Yang, Jian & Wang, Qiuwang, 2022. "Numerical study on temperature rise and structure optimization for a three-phase gas insulated switchgear busbar chamber," Energy, Elsevier, vol. 254(PC).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013664
    DOI: 10.1016/j.energy.2022.124463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222013664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Golombek, Rolf & Lind, Arne & Ringkjøb, Hans-Kristian & Seljom, Pernille, 2022. "The role of transmission and energy storage in European decarbonization towards 2050," Energy, Elsevier, vol. 239(PC).
    2. Guan, Xiangyu & Shu, Naiqiu & Peng, Hui, 2021. "LBM simulation of heat transfer processes inside GIS capsule filled with different insulation gas mixtures," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 212-225.
    3. Minh-Tuan Nguyen & Viet-Hung Nguyen & Suk-Jun Yun & Yong-Hwa Kim, 2018. "Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 11(5), pages 1-13, May.
    4. Hu, Yingxue & Yang, Jian & Wang, Jingyu & Wang, Qiuwang, 2018. "Investigation of hydrodynamic and heat transfer performances in grille-sphere composite pebble beds with DEM-CFD-Taguchi method," Energy, Elsevier, vol. 155(C), pages 909-920.
    5. Zhou, Xiaoxin & Yi, Jun & Song, Ruihua & Yang, Xiaoyu & Li, Yan & Tang, Haiyan, 2010. "An overview of power transmission systems in China," Energy, Elsevier, vol. 35(11), pages 4302-4312.
    6. Phillip Widger & Abderrahmane (Manu) Haddad, 2018. "Evaluation of SF 6 Leakage from Gas Insulated Equipment on Electricity Networks in Great Britain," Energies, MDPI, vol. 11(8), pages 1-14, August.
    7. Jia, Xiaoyu & Lin, Mei & Su, Shiwei & Wang, Qiuwang & Yang, Jian, 2022. "Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer," Energy, Elsevier, vol. 239(PA).
    8. Chen-Zhao Fu & Wen-Rong Si & Lei Quan & Jian Yang, 2018. "Numerical Study of Convection and Radiation Heat Transfer in Pipe Cable," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
    2. Elliott, Robert J.R. & Sun, Puyang & Xu, Qiqin, 2015. "Energy distribution and economic growth: An empirical test for China," Energy Economics, Elsevier, vol. 48(C), pages 24-31.
    3. Ming, Zeng & Lilin, Peng & Qiannan, Fan & Yingjie, Zhang, 2016. "Trans-regional electricity transmission in China: Status, issues and strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 572-583.
    4. Zekai Xu & Jinghan He & Zhao Liu & Zhiyi Zhao, 2023. "Collaborative Optimization of Transmission and Distribution Considering Energy Storage Systems on Both Sides of Transmission and Distribution," Energies, MDPI, vol. 16(13), pages 1-23, July.
    5. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    6. Li, Tianxiao & Li, Zheng & Li, Weiqi, 2020. "Scenarios analysis on the cross-region integrating of renewable power based on a long-period cost-optimization power planning model," Renewable Energy, Elsevier, vol. 156(C), pages 851-863.
    7. Jiaying Deng & Wenhai Zhang & Xiaomei Yang, 2019. "Recognition and Classification of Incipient Cable Failures Based on Variational Mode Decomposition and a Convolutional Neural Network," Energies, MDPI, vol. 12(10), pages 1-16, May.
    8. McIlwaine, Neil & Foley, Aoife M. & Best, Robert & Morrow, D. John & Kez, Dlzar Al, 2023. "Modelling the effect of distributed battery energy storage in an isolated power system," Energy, Elsevier, vol. 263(PC).
    9. Phillip Widger & Daniel Carr & Alistair Reid & Meirion Hills & Chris Stone & A. (Manu) Haddad, 2020. "Partial Discharge Measurements in a High Voltage Gas Insulated Transmission Line Insulated with CO 2," Energies, MDPI, vol. 13(11), pages 1-11, June.
    10. Wang, Yuanyuan & Wang, Jianzhou & Zhao, Ge & Dong, Yao, 2012. "Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China," Energy Policy, Elsevier, vol. 48(C), pages 284-294.
    11. Vo-Nguyen Tuyet-Doan & Tien-Tung Nguyen & Minh-Tuan Nguyen & Jong-Ho Lee & Yong-Hwa Kim, 2020. "Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 13(8), pages 1-16, April.
    12. Alexandru Pîrjan & George Căruțașu & Dana-Mihaela Petroșanu, 2018. "Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain," Energies, MDPI, vol. 11(10), pages 1-42, October.
    13. Guo, Zheng & Ma, Linwei & Liu, Pei & Jones, Ian & Li, Zheng, 2016. "A multi-regional modelling and optimization approach to China's power generation and transmission planning," Energy, Elsevier, vol. 116(P2), pages 1348-1359.
    14. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    15. Sanuri Ishak & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Talal Yusaf, 2021. "Fault Classification System for Switchgear CBM from an Ultrasound Analysis Technique Using Extreme Learning Machine," Energies, MDPI, vol. 14(19), pages 1-21, October.
    16. Seokho Moon & Hansam Cho & Eunji Koh & Yong Sung Cho & Hyoung Lok Oh & Younghoon Kim & Seoung Bum Kim, 2022. "Remanufacturing Decision-Making for Gas Insulated Switchgear with Remaining Useful Life Prediction," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    17. Chen, Leisheng & Lee, Jaeyoung, 2020. "Effect of pebble diameters on the heat transfer characteristics of a structured pebble bed in an HTGR," Energy, Elsevier, vol. 212(C).
    18. Bo, Zeng & Shaojie, Ouyang & Jianhua, Zhang & Hui, Shi & Geng, Wu & Ming, Zeng, 2015. "An analysis of previous blackouts in the world: Lessons for China׳s power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1151-1163.
    19. Athawale, Rasika & Felder, Frank A., 2023. "Overbuilding transmission: A case study and policy analysis of the Indian power sector," Energy Policy, Elsevier, vol. 174(C).
    20. Mathews, John A. & Tan, Hao, 2013. "The transformation of the electric power sector in China," Energy Policy, Elsevier, vol. 52(C), pages 170-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222013664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.