IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p558-d1576676.html
   My bibliography  Save this article

Catalytic Methane Decomposition for the Simultaneous Production of Hydrogen and Low-Reactivity Biocarbon for the Metallurgic Industry

Author

Listed:
  • Roger A. Khalil

    (SINTEF Energy Research, P.O. Box 4761 Torgarden, NO-7465 Trondheim, Norway)

  • Sethulakshmy Jayakumari

    (SINTEF Industry, P.O. Box 4760 Torgarden, NO-7465 Trondheim, Norway)

  • Halvor Dalaker

    (SINTEF Industry, P.O. Box 4760 Torgarden, NO-7465 Trondheim, Norway)

  • Liang Wang

    (SINTEF Energy Research, P.O. Box 4761 Torgarden, NO-7465 Trondheim, Norway)

  • Pål Tetlie

    (SINTEF Industry, P.O. Box 4760 Torgarden, NO-7465 Trondheim, Norway)

  • Øyvind Skreiberg

    (SINTEF Energy Research, P.O. Box 4761 Torgarden, NO-7465 Trondheim, Norway)

Abstract

To reach agreed-on climate goals, it is necessary to develop new energy carriers and industrial materials that are carbon-neutral. To combat global warming and keep Earth’s temperature from increasing by 1.5 °C, some of these solutions need to be carbon-negative. This study fulfills this criterion by producing clean hydrogen and biocarbon suitable for the metallurgic industry through the thermal decomposition of methane using biocarbon as a catalyst. Five different biomass samples were used to prepare biocarbons at a pyrolysis temperature of 1000 °C with a holding time of 90 min. When methane was cracked at 1100 °C with a holding time of 90 min, the highest hydrogen production was 105 mol/kg biocarbon, achieved using birch bark. The lowest hydrogen yield, of 68 mol/kg biocarbon, was achieved with steam-explosion pellets. All the biocarbons showed substantial carbon deposition from cracked methane on their surfaces, with the highest deposition on birch bark and spruce wood biocarbons of 42% relative to the biocarbon start weight. The carbon deposition increased with the decomposition temperature, the methane share in the purge gas and the holding time. The steam-explosion pellets, after deactivation, had a CO 2 reactivity that was comparable to coke, a reducing agent that is commonly used in manganese-producing industries. About 90% of the potassium and sodium were removed from the biocarbon during catalytic decomposition of methane performed at 1100 °C. The alkali removal was calculated relative to the biocarbon produced under the same conditions, but with 100% N 2 purge instead of CH 4 . After catalytic decomposition, the surface area of the biocarbon was reduced by 11–34%, depending on the biocarbon type.

Suggested Citation

  • Roger A. Khalil & Sethulakshmy Jayakumari & Halvor Dalaker & Liang Wang & Pål Tetlie & Øyvind Skreiberg, 2025. "Catalytic Methane Decomposition for the Simultaneous Production of Hydrogen and Low-Reactivity Biocarbon for the Metallurgic Industry," Energies, MDPI, vol. 18(3), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:558-:d:1576676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/558/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/558/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdul Quader, M. & Ahmed, Shamsuddin & Dawal, S.Z. & Nukman, Y., 2016. "Present needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 537-549.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    3. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    4. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    5. Shijie Ding & Jing Zhao & Meng Zhang & Sheng Yang & Hongwei Zhang, 2022. "Measuring the environmental protection efficiency and productivity of the 49 largest iron and steel enterprises in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 454-472, January.
    6. Haendel, Michael & Hirzel, Simon & Süß, Marlene, 2022. "Economic optima for buffers in direct reduction steelmaking under increasing shares of renewable hydrogen," Renewable Energy, Elsevier, vol. 190(C), pages 1100-1111.
    7. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    8. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2023. "The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Xue, Xue & Liu, Xiang & Zhu, Yifan & Yuan, Lei & Zhu, Ying & Jin, Kelang & Zhang, Lei & Zhou, Hao, 2023. "Numerical modeling and parametric study of the heat storage process of the 1.05 MW molten salt furnace," Energy, Elsevier, vol. 282(C).
    11. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, vol. 13(16), pages 1-40, August.
    12. Xue, Xue & Zhu, Yifan & Liu, Xiang & Zhu, Ying & Yuan, Lei & Zhang, Ao & Wu, Yajie & Zhang, Lei & Jin, Kelang & Zhou, Hao, 2024. "1.05 MW molten salt furnace experimental investigation of full-conditional thermal energy storage for the transfer and storage of waste heat from blast furnace gas," Renewable Energy, Elsevier, vol. 231(C).
    13. Yuan, Yuxing & Na, Hongming & Chen, Chuang & Qiu, Ziyang & Sun, Jingchao & Zhang, Lei & Du, Tao & Yang, Yuhang, 2024. "Status, challenges, and prospects of energy efficiency improvement methods in steel production: A multi-perspective review," Energy, Elsevier, vol. 304(C).
    14. Cheng, Zhilong & Tan, Zhoutuo & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2020. "Recent progress in sustainable and energy-efficient technologies for sinter production in the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Yuan, Peng & Shen, Boxiong & Duan, Dongping & Adwek, George & Mei, Xue & Lu, Fengju, 2017. "Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process," Energy, Elsevier, vol. 141(C), pages 472-482.
    16. Wang, Guangwei & Zhang, Jianliang & Lee, Jui-Yuan & Mao, Xiaoming & Ye, Lian & Xu, Wanren & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Wang, Chuan, 2020. "Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace," Applied Energy, Elsevier, vol. 266(C).
    17. Xu, Tingting & Huo, Zhaoyi & Wang, Wenjing & Xie, Ning & Li, Lili & Liu, Yingjie & Mu, Lin, 2024. "Evaluation of by-product-gas utilization options for carbon reduction at an integrated iron and steel mill," Energy, Elsevier, vol. 294(C).
    18. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Guanyong Sun & Bin Li & Hanjie Guo & Wensheng Yang & Shaoying Li & Jing Guo, 2021. "Thermodynamic Study of Energy Consumption and Carbon Dioxide Emission in Ironmaking Process of the Reduction of Iron Oxides by Carbon," Energies, MDPI, vol. 14(7), pages 1-29, April.
    20. Napp, T.A. & Few, S. & Sood, A. & Bernie, D. & Hawkes, A. & Gambhir, A., 2019. "The role of advanced demand-sector technologies and energy demand reduction in achieving ambitious carbon budgets," Applied Energy, Elsevier, vol. 238(C), pages 351-367.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:558-:d:1576676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.