IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p365-d1568257.html
   My bibliography  Save this article

Optimal Scheduling of Multi-Energy Complementary Systems Based on an Improved Pelican Algorithm

Author

Listed:
  • Hongbo Zou

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
    Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station, China Three Gorges University, Yichang 443002, China)

  • Jiehao Chen

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Fushuan Wen

    (Hainan Institute, Zhejiang University, Sanya 572025, China)

  • Yuhong Luo

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Jinlong Yang

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

  • Changhua Yang

    (College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China)

Abstract

In recent years, the global power industry has experienced rapid development, with significant advancements in the source, network, load sectors, and energy storage technologies. The secure, reliable, and economical operation of power systems is a critical challenge. Due to the stochastic nature of intermittent renewable energy generation and the coupled time-series characteristics of energy storage systems, it is essential to simulate uncertain variables accurately and develop optimization algorithms that can effectively tackle multi-objective problems in economic dispatch models for microgrids. This paper proposes a pelican algorithm enhanced by multi-strategy improvements for optimal generation scheduling. We establish eight scenarios with and without pumped storage across four typical seasons—spring, summer, autumn, and winter—and conduct simulation analyses on a real-world case. The objective is to minimize the total system cost. The improved pelican optimization algorithm (IPOA) is compared with other leading algorithms, demonstrating the validity of our model and the superiority of IPOA in reducing costs and managing complex constraints in optimization.

Suggested Citation

  • Hongbo Zou & Jiehao Chen & Fushuan Wen & Yuhong Luo & Jinlong Yang & Changhua Yang, 2025. "Optimal Scheduling of Multi-Energy Complementary Systems Based on an Improved Pelican Algorithm," Energies, MDPI, vol. 18(2), pages 1-26, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:365-:d:1568257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kangping Wang & Pengjiang Ge & Naixin Duan & Jili Wang & Jinli Lv & Meng Liu & Bin Wang, 2023. "The Multi-Objective Optimal Scheduling of the Water–Wind–Light Complementary System Based on an Improved Pigeon Flock Algorithm," Energies, MDPI, vol. 16(19), pages 1-18, September.
    2. Nwulu, Nnamdi I. & Xia, Xiaohua, 2017. "Optimal dispatch for a microgrid incorporating renewables and demand response," Renewable Energy, Elsevier, vol. 101(C), pages 16-28.
    3. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    4. Xiaohui Yang & Jiating Long & Peiyun Liu & Xiaolong Zhang & Xiaoping Liu, 2018. "Optimal Scheduling of Microgrid with Distributed Power Based on Water Cycle Algorithm," Energies, MDPI, vol. 11(9), pages 1-17, September.
    5. Shi, Mengshu & Wang, Weiye & Han, Yaxuan & Huang, Yuansheng, 2022. "Research on comprehensive benefit of hydrogen storage in microgrid system," Renewable Energy, Elsevier, vol. 194(C), pages 621-635.
    6. Bo, Yaolong & Xia, Yanghong & Wei, Wei & Li, Zichen & Zhao, Bo & Lv, Zeyan, 2023. "Hyperfine optimal dispatch for integrated energy microgrid considering uncertainty," Applied Energy, Elsevier, vol. 334(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    2. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    3. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    4. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    5. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    7. Wu, Xiong & Qi, Shixiong & Wang, Zhao & Duan, Chao & Wang, Xiuli & Li, Furong, 2019. "Optimal scheduling for microgrids with hydrogen fueling stations considering uncertainty using data-driven approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Liu, Zhi-Feng & Zhao, Shi-Xiang & Zhang, Xi-Jia & Tang, Yu & You, Guo-Dong & Li, Ji-Xiang & Zhao, Shuang-Le & Hou, Xiao-Xin, 2023. "Renewable energy utilizing and fluctuation stabilizing using optimal dynamic grid connection factor strategy and artificial intelligence-based solution method," Renewable Energy, Elsevier, vol. 219(P1).
    9. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    10. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
    11. Liu, Fan & Duan, Jiandong & Wu, Chen & Tian, Qinxing, 2024. "Risk-averse distributed optimization for integrated electricity-gas systems considering uncertainties of Wind-PV and power-to-gas," Renewable Energy, Elsevier, vol. 227(C).
    12. Niyam Haque & Anuradha Tomar & Phuong Nguyen & Guus Pemen, 2020. "Dynamic Tariff for Day-Ahead Congestion Management in Agent-Based LV Distribution Networks," Energies, MDPI, vol. 13(2), pages 1-16, January.
    13. Saheed Lekan Gbadamosi & Nnamdi I. Nwulu, 2020. "Optimal Power Dispatch and Reliability Analysis of Hybrid CHP-PV-Wind Systems in Farming Applications," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    14. Roy, Nibir Baran & Das, Debapriya, 2024. "Stochastic power allocation of distributed tri-generation plants and energy storage units in a zero bus microgrid with electric vehicles and demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    15. Zhao, Zhuoli & Xu, Jiawen & Lei, Yu & Liu, Chang & Shi, Xuntao & Lai, Loi Lei, 2025. "Robust dynamic dispatch strategy for multi-uncertainties integrated energy microgrids based on enhanced hierarchical model predictive control," Applied Energy, Elsevier, vol. 381(C).
    16. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2017. "Impact Analysis of Demand Response Intensity and Energy Storage Size on Operation of Networked Microgrids," Energies, MDPI, vol. 10(7), pages 1-19, June.
    17. Li, Zichen & Xia, Yanghong & Bo, Yaolong & Wei, Wei, 2024. "Optimal planning for electricity-hydrogen integrated energy system considering multiple timescale operations and representative time-period selection," Applied Energy, Elsevier, vol. 362(C).
    18. Shengyang Lu & Tongwei Yu & Huiwen Liu & Wuyang Zhang & Yuqiu Sui & Junyou Yang & Li Zhang & Jiaxu Zhou & Haixin Wang, 2022. "Research on Flexible Virtual Inertia Control Method Based on the Small Signal Model of DC Microgrid," Energies, MDPI, vol. 15(22), pages 1-14, November.
    19. Hemmati, Reza & Bornapour, Seyyed Mohammad & Saboori, Hedayat, 2024. "Standalone hybrid power-hydrogen system incorporating daily-seasonal green hydrogen storage and hydrogen refueling station," Energy, Elsevier, vol. 295(C).
    20. Wu, Chuanshen & Gao, Shan & Liu, Yu & Song, Tiancheng E. & Han, Haiteng, 2021. "A model predictive control approach in microgrid considering multi-uncertainty of electric vehicles," Renewable Energy, Elsevier, vol. 163(C), pages 1385-1396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:365-:d:1568257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.