IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4561-d1736013.html
   My bibliography  Save this article

Enhanced Renewable Energy Integration: A Comprehensive Framework for Grid Planning and Hybrid Power Plant Allocation

Author

Listed:
  • Mahmoud Taheri

    (Department of Electrical Engineering and Computer Engineering, Université Laval, Québec, QC G1V 0A6, Canada)

  • Abbas Rabiee

    (Department of Electrical Engineering and Computer Engineering, Université Laval, Québec, QC G1V 0A6, Canada)

  • Innocent Kamwa

    (Department of Electrical Engineering and Computer Engineering, Université Laval, Québec, QC G1V 0A6, Canada)

Abstract

Renewable energy sources play a crucial role in the urgent global pursuit of decarbonizing electricity systems. However, persistent grid congestion and lengthy planning approval processes remain the main barriers to the accelerated deployment of new green energy source capacities. Capitalizing on the synergies afforded by co-locating hybrid power plants—particularly those that harness temporally anti-correlated renewable sources such as wind and solar—behind a unified connection point presents a compelling opportunity. To this end, this paper pioneers a comprehensive planning framework for hybrid configurations, integrating transmission grid and renewable energy assets planning to include energy storage systems, wind, and solar energy capacities within a long-term planning horizon. A mixed-integer linear programming model is developed that considers both the technical and economic aspects of combined grid planning and hybrid power plant allocation. Additionally, the proposed framework incorporates the N − 1 contingency criterion, ensuring system reliability in the face of potential transmission line outages, thereby adding a layer of versatility and resilience to the approach. The model minimizes the net present value of costs, encompassing both capital and operational expenditures as well as curtailment costs. The efficacy of the proposed model is demonstrated through its implementation on the benchmark IEEE 24-bus RTS system, with findings underscoring the pivotal role of hybrid power plants in enabling cost-effective and rapid sustainable energy integration.

Suggested Citation

  • Mahmoud Taheri & Abbas Rabiee & Innocent Kamwa, 2025. "Enhanced Renewable Energy Integration: A Comprehensive Framework for Grid Planning and Hybrid Power Plant Allocation," Energies, MDPI, vol. 18(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4561-:d:1736013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stanley, Andrew P.J. & King, Jennifer, 2022. "Optimizing the physical design and layout of a resilient wind, solar, and storage hybrid power plant," Applied Energy, Elsevier, vol. 317(C).
    2. Panda, Deepak Kumar & Das, Saptarshi, 2021. "Economic operational analytics for energy storage placement at different grid locations and contingency scenarios with stochastic wind profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Murphy, C.A. & Schleifer, A. & Eurek, K., 2021. "A taxonomy of systems that combine utility-scale renewable energy and energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Sini Han & Hyeon-Jin Kim & Duehee Lee, 2020. "A Long-Term Evaluation on Transmission Line Expansion Planning with Multistage Stochastic Programming," Energies, MDPI, vol. 13(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karlson Hargroves & Benjamin James & Joshua Lane & Peter Newman, 2023. "The Role of Distributed Energy Resources and Associated Business Models in the Decentralised Energy Transition: A Review," Energies, MDPI, vol. 16(10), pages 1-15, May.
    2. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    3. Assareh, Ehsanolah & Hoseinzadeh, Siamak & Agarwal, Saurabh & keykhah, Mohammad & Agarwal, Neha & Heydari, Azim & Astiaso Garcia, Davide, 2025. "Assessment of a wind energy installation for powering a residential building in Rome, Italy: Incorporating wind turbines, compressed air energy storage, and a compression chiller based on a machine le," Energy, Elsevier, vol. 320(C).
    4. Sun, Yinong & Frew, Bethany & Dalvi, Sourabh & Dhulipala, Surya C., 2022. "Insights into methodologies and operational details of resource adequacy assessment: A case study with application to a broader flexibility framework," Applied Energy, Elsevier, vol. 328(C).
    5. Moez Krichen & Yasir Basheer & Saeed Mian Qaisar & Asad Waqar, 2023. "A Survey on Energy Storage: Techniques and Challenges," Energies, MDPI, vol. 16(5), pages 1-29, February.
    6. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    7. Huijia Yang & Weiguang Fan & Guangyu Qin & Zhenyu Zhao, 2021. "A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project," Energies, MDPI, vol. 14(4), pages 1-17, February.
    8. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    9. Zhao, Ning & You, Fengqi, 2022. "Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Alexander Vinogradov & Vadim Bolshev & Alina Vinogradova & Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Radomir Goňo & Elżbieta Jasińska, 2020. "Analysis of the Power Supply Restoration Time after Failures in Power Transmission Lines," Energies, MDPI, vol. 13(11), pages 1-18, May.
    11. Shree Om Bade & Hossein Salehfar & Olusegun Stanley Tomomewo & Johannes Van der Watt & Michael Mann, 2025. "Evaluating the Economic Feasibility of Utility-Scale Hybrid Power Plants Under Divergent Policy Environments: A Multi-Objective Approach," Energies, MDPI, vol. 18(17), pages 1-24, August.
    12. Gengli Song & Hua Wei, 2022. "Distributionally Robust Multi-Energy Dynamic Optimal Power Flow Considering Water Spillage with Wasserstein Metric," Energies, MDPI, vol. 15(11), pages 1-18, May.
    13. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2022. "System Profit Improvement of a Thermal–Wind–CAES Hybrid System Considering Imbalance Cost in the Electricity Market," Energies, MDPI, vol. 15(24), pages 1-25, December.
    14. Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2025. "A Review of Offshore Renewable Energy for Advancing the Clean Energy Transition," Energies, MDPI, vol. 18(18), pages 1-29, September.
    15. Yan, Xiaohe & Li, Jialiang & Liu, Nian, 2025. "Refined multi-state modeling based battery energy storage system reliability indicators and evaluation," Applied Energy, Elsevier, vol. 393(C).
    16. Durvasulu, Venkat & Balliet, W. Hill & Lopez, Carlos Josue & Lin, Yingqian & Li, Binghui & Alam, S.M. Shafiul & Mahalik, Mathew R. & Kwon, Jonghwan & Mosier, Thomas M.R., 2024. "Rationale for adding batteries to hydropower plants and tradeoffs in hybrid system operation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    17. Shree Om Bade & Olusegun Stanley Tomomewo & Michael Mann & Johannes Van der Watt & Hossein Salehfar, 2025. "Optimal Sizing and Techno-Economic Evaluation of a Utility-Scale Wind–Solar–Battery Hybrid Plant Considering Weather Uncertainties, as Well as Policy and Economic Incentives, Using Multi-Objective Opt," Energies, MDPI, vol. 18(13), pages 1-39, July.
    18. Biggins, F.A.V. & Travers, D. & Ejeh, J.O. & Lee, R. & Buckley, A. & Brown, S., 2023. "The economic impact of location on a solar farm co-located with energy storage," Energy, Elsevier, vol. 278(C).
    19. Guo, Jiacheng & Zhang, Peiwen & Wu, Di & Liu, Zhijian & Liu, Xuan & Zhang, Shicong & Yang, Xinyan & Ge, Hua, 2022. "Multi-objective optimization design and multi-attribute decision-making method of a distributed energy system based on nearly zero-energy community load forecasting," Energy, Elsevier, vol. 239(PC).
    20. Panda, Deepak Kumar & Halder, Kaushik & Das, Saptarshi & Townley, Stuart, 2024. "Observer based decentralized load frequency control with false data injection attack for specified network quality and delay," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4561-:d:1736013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.