IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4465-d1730175.html
   My bibliography  Save this article

Federated Hybrid Graph Attention Network with Two-Step Optimization for Electricity Consumption Forecasting

Author

Listed:
  • Hao Yang

    (Yunnan Power Grid Co., Ltd., China Southern Power Grid, Kunming 650217, China)

  • Xinwu Ji

    (Yunnan Power Grid Co., Ltd., China Southern Power Grid, Kunming 650217, China)

  • Qingchan Liu

    (Yunnan Power Grid Co., Ltd., China Southern Power Grid, Kunming 650217, China)

  • Lukun Zeng

    (China Southern Power Grid Digital Grid Group Co., Ltd., Guangzhou 510700, China)

  • Yuan Ai

    (China Southern Power Grid Digital Grid Group Co., Ltd., Guangzhou 510700, China)

  • Hang Dai

    (China Southern Power Grid Digital Grid Group Co., Ltd., Guangzhou 510700, China)

Abstract

Electricity demand forecasting is essential for smart grid management, yet it presents challenges due to the dynamic nature of consumption trends and regional variability in usage patterns. While federated learning (FL) offers a privacy-preserving solution for handling sensitive, region-specific data, traditional FL approaches struggle when local datasets are limited, often leading models to overfit noisy peak fluctuations. Additionally, many regions exhibit stable, periodic consumption behaviors, further complicating the need for a global model that can effectively capture diverse patterns without overfitting. To address these issues, we propose Federated Hybrid Graph Attention Network with Two-step Optimization for Electricity Consumption Forecasting (FedHMGAT), a hybrid modeling framework designed to balance periodic trends and numerical variations. Specifically, FedHMGAT leverages a numerical structure graph with a Gaussian encoder to model peak fluctuations as dynamic covariance features, mitigating noise-driven overfitting, while a multi-scale attention mechanism captures periodic consumption patterns through hybrid feature representation. These feature components are then fused to produce robust predictions. To enhance global model aggregation, FedHMGAT employs a two-step parameter aggregation strategy: first, a regularization term ensures parameter similarity across local models during training, and second, adaptive dynamic fusion at the server tailors aggregation weights to regional data characteristics, preventing feature dilution. Experimental results verify that FedHMGAT outperforms conventional FL methods, offering a scalable and privacy-aware solution for electricity demand forecasting.

Suggested Citation

  • Hao Yang & Xinwu Ji & Qingchan Liu & Lukun Zeng & Yuan Ai & Hang Dai, 2025. "Federated Hybrid Graph Attention Network with Two-Step Optimization for Electricity Consumption Forecasting," Energies, MDPI, vol. 18(17), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4465-:d:1730175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    2. Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiakang Wang & Hui Liu & Guangji Zheng & Ye Li & Shi Yin, 2023. "Short-Term Load Forecasting Based on Outlier Correction, Decomposition, and Ensemble Reinforcement Learning," Energies, MDPI, vol. 16(11), pages 1-16, May.
    2. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    3. Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
    4. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    5. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    6. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    7. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    8. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    9. Alfredo Candela Esclapez & Miguel López García & Sergio Valero Verdú & Carolina Senabre Blanes, 2022. "Automatic Selection of Temperature Variables for Short-Term Load Forecasting," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    10. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    11. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    12. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    13. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    14. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    15. Xing Zhang, 2018. "Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm," Energies, MDPI, vol. 11(6), pages 1-18, June.
    16. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    17. Joanna Piotrowska-Woroniak & Tomasz Szul, 2022. "Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings," Energies, MDPI, vol. 15(23), pages 1-13, November.
    18. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    19. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    20. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4465-:d:1730175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.