IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4413-d1727573.html
   My bibliography  Save this article

Effect of Electrical Load and Operating Conditions on the Hydraulic Performance of a 10 kW Pelton Turbine Micro Hydropower Plant

Author

Listed:
  • Raúl R. Delgado-Currín

    (Department of Mechanical Engineering, Universidad de La Frontera, Av. Fco. Salazar 01145, Temuco 4780000, Chile
    Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago 8370456, Chile)

  • Williams R. Calderón-Muñoz

    (Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago 8370456, Chile
    Center for Sustainable Acceleration of Electromobility-CASE, Universidad de Chile, Beauchef 851, Santiago 8370456, Chile
    Energy Center, Universidad de Chile, Beauchef 851, Santiago 8370456, Chile)

  • J. C. Elicer-Cortés

    (Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago 8370456, Chile)

  • Renato Hunter-Alarcón

    (Department of Mechanical Engineering, Universidad de La Frontera, Av. Fco. Salazar 01145, Temuco 4780000, Chile)

Abstract

Micro-hydroelectric power plants play a fundamental role in microgrid systems and rural electrification projects based on non-conventional renewable energies, where the stability of the electricity supply and load variability are critical factors for efficient operation. This work focuses on analyzing the impact of electrical load variation on the performance of a 10 kW micro hydroelectric power plant equipped with a Pelton turbine coupled to an electric generator. The main objective is to characterize the behavior of the turbine–generator system under different operating conditions, evaluating the hydraulic performance of the turbine, the electrical performance of the generator, and the overall performance of the micro power plant. Key variables such as flow rate, pressure, shaft speed, mechanical torque, current, and electrical voltage are monitored, considering the effect of electrical consumption on each of them. The experimental methodology includes tests at different electrical loads connected to the generator, using the spear system, which allows the flow rate in the injector to be modulated. The results indicate that reducing the flow rate using the spear increases the torque on the shaft, as well as the electrical current and voltage, for the same energy demand. Likewise, it is observed that the electrical efficiency of the generator remains stable for shaft speeds above 400 rpm, while the overall efficiency of the turbine–generator improves by up to 25% at this same speed. However, a voltage drop of more than 8% is recorded when the electrical power consumption increases from 3 kW to 9 kW, which demonstrates the sensitivity of the system to load variations. This work provides a comprehensive view of the dynamic behavior of micro-hydraulic power plants under realistic operating conditions, proposing an experimental methodology that can be applied to the design, optimization, and control of small-scale hydroelectric systems. These results provide novel experimental evidence on how electrical load variations affect the global performance of P -based micro hydropower systems.

Suggested Citation

  • Raúl R. Delgado-Currín & Williams R. Calderón-Muñoz & J. C. Elicer-Cortés & Renato Hunter-Alarcón, 2025. "Effect of Electrical Load and Operating Conditions on the Hydraulic Performance of a 10 kW Pelton Turbine Micro Hydropower Plant," Energies, MDPI, vol. 18(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4413-:d:1727573
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Williams, A.A. & Simpson, R., 2009. "Pico hydro – Reducing technical risks for rural electrification," Renewable Energy, Elsevier, vol. 34(8), pages 1986-1991.
    2. Cobb, Bryan R. & Sharp, Kendra V., 2013. "Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pico-hydro installations," Renewable Energy, Elsevier, vol. 50(C), pages 959-964.
    3. Ki-Ha Kim & Dong-Hyun Kim & Suk-Jin Hong & Sang-Myung Lee, 2025. "Computational Fluid Dynamics Analysis and Validation with Field Test of 1 MW Hydropower Turbine System," Energies, MDPI, vol. 18(3), pages 1-20, January.
    4. Elgammi, Moutaz & Hamad, Abduljawad Ashour, 2022. "A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon," Renewable Energy, Elsevier, vol. 195(C), pages 1-16.
    5. Zeng, Chongji & Xiao, Yexiang & Luo, Yongyao & Zhang, Jin & Wang, Zhengwei & Fan, Honggang & Ahn, Soo-Hwang, 2018. "Hydraulic performance prediction of a prototype four-nozzle Pelton turbine by entire flow path simulation," Renewable Energy, Elsevier, vol. 125(C), pages 270-282.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    2. Jawahar, C.P. & Michael, Prawin Angel, 2017. "A review on turbines for micro hydro power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 882-887.
    3. Borge-Diez, David & Godoy-Déniz, Juan Manuel & López-Rey, África & Colmenar-Santos, Antonio, 2021. "Pico turbines, the solution to self-supply energy to the water supply network. A case study in Las Palmas de Gran Canaria," Energy, Elsevier, vol. 229(C).
    4. Gaiser, Kyle & Erickson, Paul & Stroeve, Pieter & Delplanque, Jean-Pierre, 2016. "An experimental investigation of design parameters for pico-hydro Turgo turbines using a response surface methodology," Renewable Energy, Elsevier, vol. 85(C), pages 406-418.
    5. Joe Butchers & Shaun Benzon & Sam Williamson & Julian Booker & George Aggidis, 2021. "A Rationalised CFD Design Methodology for Turgo Turbines to Enable Local Manufacture in the Global South," Energies, MDPI, vol. 14(19), pages 1-23, October.
    6. Dallison, Richard J.H. & Patil, Sopan D., 2023. "Impact of climate change on hydropower potential in the UK and Ireland," Renewable Energy, Elsevier, vol. 207(C), pages 611-628.
    7. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    8. Elgammi, Moutaz & Hamad, Abduljawad Ashour, 2022. "A feasibility study of operating a low static pressure head micro pelton turbine based on water hammer phenomenon," Renewable Energy, Elsevier, vol. 195(C), pages 1-16.
    9. Cobb, Bryan R. & Sharp, Kendra V., 2013. "Impulse (Turgo and Pelton) turbine performance characteristics and their impact on pico-hydro installations," Renewable Energy, Elsevier, vol. 50(C), pages 959-964.
    10. Brandon-Toole, Matthew & Birzer, Cristian & Kelso, Richard, 2024. "An exploration of the wake of an in-stream water wheel," Renewable Energy, Elsevier, vol. 237(PB).
    11. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    12. Bozorgi, A. & Javidpour, E. & Riasi, A. & Nourbakhsh, A., 2013. "Numerical and experimental study of using axial pump as turbine in Pico hydropower plants," Renewable Energy, Elsevier, vol. 53(C), pages 258-264.
    13. Wang, Xiao-Dong & Wang, Wen-Quan & Zhang, Chang-Bing & Xu, Yong, 2025. "Old wine in a new bottle: Energy loss evaluation in a six-nozzle Pelton turbine with entropy production theory," Energy, Elsevier, vol. 319(C).
    14. Židonis, Audrius & Benzon, David S. & Aggidis, George A., 2015. "Development of hydro impulse turbines and new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1624-1635.
    15. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
    16. Vinod, J. & Sarkar, Bikash K. & Sanyal, Dipankar, 2022. "Flow control in a small Francis turbine by system identification and fuzzy adaptation of PID and deadband controllers," Renewable Energy, Elsevier, vol. 201(P2), pages 87-99.
    17. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Wang, Zhengwei & Luo, Yongyao & Luo, Kun, 2020. "Energy conversion characteristics of multiphase pump impeller analyzed based on blade load spectra," Renewable Energy, Elsevier, vol. 157(C), pages 9-23.
    18. Choudhury, Shibabrata & Parida, Adikanda & Pant, Rajive Mohan & Chatterjee, Saibal, 2019. "GIS augmented computational intelligence technique for rural cluster electrification through prioritized site selection of micro-hydro power generation system," Renewable Energy, Elsevier, vol. 142(C), pages 487-496.
    19. Hirmer, Stephanie & Cruickshank, Heather, 2014. "The user-value of rural electrification: An analysis and adoption of existing models and theories," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 145-154.
    20. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4413-:d:1727573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.