IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4198-d1719641.html
   My bibliography  Save this article

Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate

Author

Listed:
  • Dennis Thom

    (Faculty of Automatic, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznań University of Technology, St. Piotrowo 3a, 60-965 Poznań, Poland)

  • Artur Bugała

    (Faculty of Automatic, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznań University of Technology, St. Piotrowo 3a, 60-965 Poznań, Poland)

  • Dorota Bugała

    (Faculty of Automatic, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznań University of Technology, St. Piotrowo 3a, 60-965 Poznań, Poland)

  • Wojciech Czekała

    (Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland)

Abstract

In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely integrates detailed multi-variant fixed-tilt PV system simulations with comprehensive economic evaluation under temperate climate conditions, addressing site-specific spatial constraints and grid integration considerations that have rarely been combined in previous works. In this paper, an energy and economic efficiency analysis for a photovoltaic power plant, located in central Poland, designed in eight variants (10°, 15°, 20°, 25°, 30° PV module inclination angle for a south orientation and 10°, 20°, 30° for an east–west orientation) for a limited building area of approximately 300,000 m 2 was conducted. In PVSyst computer simulations, PVGIS-SARAH2 solar radiation data were used together with the most common data for describing the Polish local solar climate, called Typical Meteorological Year data (TMY). The most energy-efficient variants were found to be 20° S and 30° S, configurations with the highest surface production coefficient (249.49 and 272.68 kWh/m 2 ) and unit production efficiency values (1123 and 1132 kWh/kW, respectively). These findings highlight potential efficiency gains of up to approximately 9% in surface production coefficient and financial returns exceeding 450% ROI, demonstrating significant economic benefits. In economic terms, the 15° S variant achieved the highest values of financial parameters, such as the return on investment (ROI) (453.2%), the value of the average annual share of profits in total revenues (56.93%), the shortest expected payback period (8.7 years), the value of the levelized cost of energy production (LCOE) (0.1 EUR/kWh), and one of the lowest costs of building 1 MWp of a photovoltaic farm (664,272.7 EUR/MWp). Among the tested variants of photovoltaic farms with an east–west geographical orientation, the most advantageous choice is the 10° EW arrangement. The results provide valuable insights for policymakers and investors aiming to optimize photovoltaic deployment in temperate climates, supporting the broader transition to renewable energy and alignment with national energy policy goals.

Suggested Citation

  • Dennis Thom & Artur Bugała & Dorota Bugała & Wojciech Czekała, 2025. "Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate," Energies, MDPI, vol. 18(15), pages 1-32, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4198-:d:1719641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4198/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4198-:d:1719641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.