IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4198-d1719641.html
   My bibliography  Save this article

Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate

Author

Listed:
  • Dennis Thom

    (Faculty of Automatic, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznań University of Technology, St. Piotrowo 3a, 60-965 Poznań, Poland)

  • Artur Bugała

    (Faculty of Automatic, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznań University of Technology, St. Piotrowo 3a, 60-965 Poznań, Poland)

  • Dorota Bugała

    (Faculty of Automatic, Robotics and Electrical Engineering, Institute of Electrical Engineering and Electronics, Poznań University of Technology, St. Piotrowo 3a, 60-965 Poznań, Poland)

  • Wojciech Czekała

    (Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland)

Abstract

In recent years, solar energy has emerged as one of the most advanced renewable energy sources, with its production capacity steadily growing. To maximize output and efficiency, choosing the right configuration for a specific location for these installations is crucial. This study uniquely integrates detailed multi-variant fixed-tilt PV system simulations with comprehensive economic evaluation under temperate climate conditions, addressing site-specific spatial constraints and grid integration considerations that have rarely been combined in previous works. In this paper, an energy and economic efficiency analysis for a photovoltaic power plant, located in central Poland, designed in eight variants (10°, 15°, 20°, 25°, 30° PV module inclination angle for a south orientation and 10°, 20°, 30° for an east–west orientation) for a limited building area of approximately 300,000 m 2 was conducted. In PVSyst computer simulations, PVGIS-SARAH2 solar radiation data were used together with the most common data for describing the Polish local solar climate, called Typical Meteorological Year data (TMY). The most energy-efficient variants were found to be 20° S and 30° S, configurations with the highest surface production coefficient (249.49 and 272.68 kWh/m 2 ) and unit production efficiency values (1123 and 1132 kWh/kW, respectively). These findings highlight potential efficiency gains of up to approximately 9% in surface production coefficient and financial returns exceeding 450% ROI, demonstrating significant economic benefits. In economic terms, the 15° S variant achieved the highest values of financial parameters, such as the return on investment (ROI) (453.2%), the value of the average annual share of profits in total revenues (56.93%), the shortest expected payback period (8.7 years), the value of the levelized cost of energy production (LCOE) (0.1 EUR/kWh), and one of the lowest costs of building 1 MWp of a photovoltaic farm (664,272.7 EUR/MWp). Among the tested variants of photovoltaic farms with an east–west geographical orientation, the most advantageous choice is the 10° EW arrangement. The results provide valuable insights for policymakers and investors aiming to optimize photovoltaic deployment in temperate climates, supporting the broader transition to renewable energy and alignment with national energy policy goals.

Suggested Citation

  • Dennis Thom & Artur Bugała & Dorota Bugała & Wojciech Czekała, 2025. "Comprehensive Energy and Economic Analysis of Selected Variants of a Large-Scale Photovoltaic Power Plant in a Temperate Climate," Energies, MDPI, vol. 18(15), pages 1-32, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4198-:d:1719641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4198/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4198/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    2. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    3. Md. Shouquat Hossain & Naseer Abboodi Madlool & Ali Wadi Al-Fatlawi & Mamdouh El Haj Assad, 2023. "High Penetration of Solar Photovoltaic Structure on the Grid System Disruption: An Overview of Technology Advancement," Sustainability, MDPI, vol. 15(2), pages 1-25, January.
    4. Anna Maria Kowalczyk & Szymon Czyża, 2022. "Optimising Photovoltaic Farm Location Using a Capabilities Matrix and GIS," Energies, MDPI, vol. 15(18), pages 1-32, September.
    5. Julio Manuel de Luis-Ruiz & Benito Ramiro Salas-Menocal & Raúl Pereda-García & Rubén Pérez-Álvarez & Javier Sedano-Cibrián & Carolina Ruiz-Fernández, 2024. "Optimal Location of Solar Photovoltaic Plants Using Geographic Information Systems and Multi-Criteria Analysis," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
    6. Emiliia Iakovleva & Daniel Guerra & Pavel Tcvetkov & Yaroslav Shklyarskiy, 2022. "Technical and Economic Analysis of Modernization of Solar Power Plant: A Case Study from the Republic of Cuba," Sustainability, MDPI, vol. 14(2), pages 1-23, January.
    7. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    8. Arán Carrión, J. & Espín Estrella, A. & Aznar Dols, F. & Zamorano Toro, M. & Rodríguez, M. & Ramos Ridao, A., 2008. "Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2358-2380, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Malinić & Uroš Durlević & Ljiljana Brašanac-Bosanac & Ivan Novković & Marko Joksimović & Rajko Golić & Filip Krstić, 2025. "A Hybrid Fuzzy AHP–MULTIMOORA Approach for Solar Energy Development on Rural Brownfield Sites in Serbia," Sustainability, MDPI, vol. 17(17), pages 1-33, September.
    2. Sofia Spyridonidou & Eva Loukogeorgaki & Dimitra G. Vagiona & Teresa Bertrand, 2022. "Towards a Sustainable Spatial Planning Approach for PV Site Selection in Portugal," Energies, MDPI, vol. 15(22), pages 1-22, November.
    3. Li, Xiao-Ya & Dong, Xin-Yu & Chen, Sha & Ye, Yan-Mei, 2024. "The promising future of developing large-scale PV solar farms in China: A three-stage framework for site selection," Renewable Energy, Elsevier, vol. 220(C).
    4. Rios, R. & Duarte, S., 2021. "Selection of ideal sites for the development of large-scale solar photovoltaic projects through Analytical Hierarchical Process – Geographic information systems (AHP-GIS) in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Shorabeh, Saman Nadizadeh & Firozjaei, Mohammad Karimi & Nematollahi, Omid & Firozjaei, Hamzeh Karimi & Jelokhani-Niaraki, Mohammadreza, 2019. "A risk-based multi-criteria spatial decision analysis for solar power plant site selection in different climates: A case study in Iran," Renewable Energy, Elsevier, vol. 143(C), pages 958-973.
    6. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    7. Elkadeem, Mohamed R. & Younes, Ali & Jurasz, Jakub & AlZahrani, Atif S. & Abido, Mohammad A., 2025. "A spatio-temporal decision-making model for solar, wind, and hybrid systems – A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 383(C).
    8. Günen, Mehmet Akif, 2021. "A comprehensive framework based on GIS-AHP for the installation of solar PV farms in Kahramanmaraş, Turkey," Renewable Energy, Elsevier, vol. 178(C), pages 212-225.
    9. Dimitra G. Vagiona, 2021. "Comparative Multicriteria Analysis Methods for Ranking Sites for Solar Farm Deployment: A Case Study in Greece," Energies, MDPI, vol. 14(24), pages 1-23, December.
    10. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    11. Sari, Fatih & Rusen, Selmin Ener, 2025. "Assessment of the criteria importance for determining solar panel site potential via machine learning algorithms, a case study Central Anatolia region, Turkey," Renewable Energy, Elsevier, vol. 239(C).
    12. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    13. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    14. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    15. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    16. Yilmaz, İsmail & Kocer, Abdulkadir & Aksoy, Ercument, 2024. "Site selection for solar power plants using GIS and fuzzy analytic hierarchy process: Case study of the western mediterranean region of Turkiye," Renewable Energy, Elsevier, vol. 237(PC).
    17. Paweł Kut & Katarzyna Pietrucha-Urbanik, 2024. "Bibliometric Analysis of Multi-Criteria Decision-Making (MCDM) Methods in Environmental and Energy Engineering Using CiteSpace Software: Identification of Key Research Trends and Patterns of Internati," Energies, MDPI, vol. 17(16), pages 1-27, August.
    18. Jalil Heidary Dahooie & Ali Husseinzadeh Kashan & Zahra Shoaei Naeini & Amir Salar Vanaki & Edmundas Kazimieras Zavadskas & Zenonas Turskis, 2022. "A Hybrid Multi-Criteria-Decision-Making Aggregation Method and Geographic Information System for Selecting Optimal Solar Power Plants in Iran," Energies, MDPI, vol. 15(8), pages 1-20, April.
    19. Amjad, Fahd & Shah, Liaqat Ali, 2020. "Identification and assessment of sites for solar farms development using GIS and density based clustering technique- A case of Pakistan," Renewable Energy, Elsevier, vol. 155(C), pages 761-769.
    20. Gao, Jing & Wang, Chao & Wang, Zhanwu & Lin, Jin & Zhang, Runkai & Wu, Xin & Xu, Guangyin & Wang, Zhenfeng, 2024. "Site selection decision for biomass cogeneration projects from a sustainable perspective: A case study of China," Energy, Elsevier, vol. 286(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4198-:d:1719641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.