IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3993-d1710911.html
   My bibliography  Save this article

Hybrid Small Modular Reactor—Renewable Systems for Smart Cities: A Simulation-Based Assessment for Clean and Resilient Urban Energy Transitions

Author

Listed:
  • Nikolay Hinov

    (CoE “National Center of Mechatronics and Clean Technologies”, 1000 Sofia, Bulgaria
    Department of Computer Systems, Faculty of Computer Systems and Technologies, Technical University of Sofia, 1000 Sofia, Bulgaria)

Abstract

The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart grid architecture. SMRs offer compact, low-carbon, and reliable baseload power suitable for urban environments, while PV and storage enhance system flexibility and renewable integration. Six energy mix scenarios are evaluated using a lifecycle-based cost model that incorporates both capital expenditures (CAPEX) and cumulative carbon costs over a 25-year horizon. The modeling results demonstrate that hybrid SMR–renewable systems—particularly those with high nuclear shares—can reduce lifecycle CO 2 emissions by over 90%, while maintaining long-term economic viability under carbon pricing assumptions. Scenario C, which combines 50% SMR, 40% PV, and 10% battery, emerges as a balanced configuration offering deep decarbonization with moderate investment levels. The proposed framework highlights key trade-offs between emissions and capital cost and seeking resilient and scalable pathways to support the global clean energy transition and net-zero commitments.

Suggested Citation

  • Nikolay Hinov, 2025. "Hybrid Small Modular Reactor—Renewable Systems for Smart Cities: A Simulation-Based Assessment for Clean and Resilient Urban Energy Transitions," Energies, MDPI, vol. 18(15), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3993-:d:1710911
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mikołaj Oettingen, 2021. "Assessment of the Radiotoxicity of Spent Nuclear Fuel from a Fleet of PWR Reactors," Energies, MDPI, vol. 14(11), pages 1-23, May.
    2. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Mikołaj Oettingen, 2022. "The Application of Radiochemical Measurements of PWR Spent Fuel for the Validation of Burnup Codes," Energies, MDPI, vol. 15(9), pages 1-15, April.
    4. Danilo Santoro & Nicola Delmonte & Marco Simonazzi & Andrea Toscani & Nicholas Rocchi & Giovanna Sozzi & Paolo Cova & Roberto Menozzi, 2023. "Local Power Distribution—A Review of Nanogrid Architectures, Control Strategies, and Converters," Sustainability, MDPI, vol. 15(3), pages 1-29, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Huang & Xiaoming Song & Shuliang Zou & Shoulong Xu & Fang Zhao & Na Liu, 2023. "Study on the Atmospheric Diffusion of Airborne Radionuclide under LOCA of Offshore Floating Nuclear Power Plants Based on CALPUFF," Sustainability, MDPI, vol. 15(3), pages 1-14, February.
    2. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    3. Przemysław Stanisz & Mikołaj Oettingen & Jerzy Cetnar, 2022. "Development of a Trajectory Period Folding Method for Burnup Calculations," Energies, MDPI, vol. 15(6), pages 1-15, March.
    4. Christian von Hirschhausen, 2022. "Nuclear Power in the Twenty-first Century (Part II) - The Economic Value of Plutonium," Discussion Papers of DIW Berlin 2011, DIW Berlin, German Institute for Economic Research.
    5. Maithah M. Alaleeli & Saeed A. Alameri & Mohammad Alrwashdeh, 2022. "Neutronic Analysis of SiC/SiC Sandwich Cladding Design in APR-1400 under Normal Operation Conditions," Energies, MDPI, vol. 15(14), pages 1-20, July.
    6. Radmila Sabitova & Yuri Popov & Ruslan Irkimbekov & Irina Prozorova & Ildar Derbyshev & Erlan Nurzhanov & Artur Surayev & Vyacheslav Gnyrya & Almas Azimkhanov, 2023. "Results of Experiments under the Physical Start-Up Program of the IVG.1M Reactor," Energies, MDPI, vol. 16(17), pages 1-12, August.
    7. Waldemar Wójcik & Petro Lezhniuk & Cezary Kaczmarek & Viacheslav Komar & Iryna Hunko & Nataliia Sobchuk & Laura Yesmakhanova & Zhazira Shermantayeva, 2025. "Integrated Assessment of the Quality of Functioning of Local Electric Energy Systems," Energies, MDPI, vol. 18(1), pages 1-15, January.
    8. Ali Kalair & Elmira Jamei & Mehdi Seyedmahmoudian & Saad Mekhilef & Naeem Abas, 2024. "Building the Future: Integrating Phase Change Materials in Network of Nanogrids (NoN)," Energies, MDPI, vol. 17(23), pages 1-41, November.
    9. Wieser, Eric & Clarno, Kevin & Haas, Derek & Webber, Michael E., 2025. "The economics of small modular reactors at coal sites: A program-level analysis within the state of Texas," Energy Policy, Elsevier, vol. 202(C).
    10. Seong-Bae Jo & Dat Thanh Tran & Muhammad Alif Miraj Jabbar & Myungbok Kim & Kyeong-Hwa Kim, 2024. "Continuous Power Management of Decentralized DC Microgrid Based on Transitional Operation Modes under System Uncertainty and Sensor Failure," Sustainability, MDPI, vol. 16(12), pages 1-29, June.
    11. Bartnik, Ryszard & Hnydiuk-Stefan, Anna, 2025. "Evaluation of energy and economic efficiency in upgrading coal-fired power plants: Integrating HTGR reactors and turboexpanders for supercritical steam parameters," Energy, Elsevier, vol. 318(C).
    12. Erwan Hermawan & Usman Sudjadi, 2022. "Integrated Nuclear-Renewable Energy System for Industrialization in West Nusa Tenggara Province, Indonesia: Economic, Potential Site, and Policy Recommendation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 146-159, July.
    13. Thellufsen, Jakob Zinck & Lund, Henrik & Mathiesen, Brian Vad & Østergaard, Poul Alberg & Sorknæs, Peter & Nielsen, Steffen & Madsen, Poul Thøis & Andresen, Gorm Bruun, 2024. "Cost and system effects of nuclear power in carbon-neutral energy systems," Applied Energy, Elsevier, vol. 371(C).
    14. Mignacca, Benito & Locatelli, Giorgio & Velenturf, Anne, 2020. "Modularisation as enabler of circular economy in energy infrastructure," Energy Policy, Elsevier, vol. 139(C).
    15. Wealer, B. & Bauer, S. & Hirschhausen, C.v. & Kemfert, C. & Göke, L., 2021. "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Qu, Chunzi & Bang, Rasmus Noss, 2023. "Comparative Investment Analysis of Wind and Nuclear Energy: Assessing the Impact of Changes in the Electricity Mix and Required Government Support for Investment Parity," Discussion Papers 2023/8, Norwegian School of Economics, Department of Business and Management Science.
    17. Paweł Sokólski & Tomasz A. Rutkowski & Bartosz Ceran & Dariusz Horla & Daria Złotecka, 2021. "Power System Stabilizer as a Part of a Generator MPC Adaptive Predictive Control System," Energies, MDPI, vol. 14(20), pages 1-25, October.
    18. Liu, Yanyan & Huang, Guohe & Chen, Jiapei & Zhang, Xiaoyue & Zheng, Xiaogui & Zhai, Mengyu, 2022. "Development of an optimization-aided small modular reactor siting model – A case study of Saskatchewan, Canada," Applied Energy, Elsevier, vol. 305(C).
    19. Nian, Victor & Mignacca, Benito & Locatelli, Giorgio, 2022. "Policies toward net-zero: Benchmarking the economic competitiveness of nuclear against wind and solar energy," Applied Energy, Elsevier, vol. 320(C).
    20. Okunlola, Ayodeji & Davis, Matthew & Kumar, Amit, 2023. "Assessing the cost competitiveness of electrolytic hydrogen production from small modular nuclear reactor-based power plants: A price-following perspective," Applied Energy, Elsevier, vol. 346(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3993-:d:1710911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.