IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v202y2025ics0301421525000795.html
   My bibliography  Save this article

The economics of small modular reactors at coal sites: A program-level analysis within the state of Texas

Author

Listed:
  • Wieser, Eric
  • Clarno, Kevin
  • Haas, Derek
  • Webber, Michael E.

Abstract

In this analysis we examine the economic costs and benefits of installing dozens of small modular reactors at recently retired coal power plants in Texas to determine the viability of a grid or “program-level” approach to nuclear power plant planning in the United States. Previous studies have indicated that utilizing stranded infrastructure assets at retired coal power plants, known as the “coal-to-nuclear” transition, could greatly reduce the amount of time and capital required to build just a single commercial nuclear plant. A discounted cash flow analysis was created using data from regional electricity markets, coal-to-nuclear studies, and other industry sources to estimate the potential value of SMR projects. The analysis includes multiple scenarios to account for varying project sizes, changes in technology learning rates, and recently implemented energy tax credits. Results indicate that increasing the rate of learning has only a minimal lowering effect on the Levelized Cost of Electricity (LCOE), as both the learning rate and LCOE quickly plateau. The most significant cost reductions were enabled by tax credits and coal-to-nuclear cost enhancements that decreased the LCOE to a competitive range of $43–52/MWh. However, our work finds that program-level benefits will likely be the result of cost sharing and risk modularization rather than direct improvement in metrics like LCOE and net present value as those are still smaller in comparison.

Suggested Citation

  • Wieser, Eric & Clarno, Kevin & Haas, Derek & Webber, Michael E., 2025. "The economics of small modular reactors at coal sites: A program-level analysis within the state of Texas," Energy Policy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:enepol:v:202:y:2025:i:c:s0301421525000795
    DOI: 10.1016/j.enpol.2025.114572
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421525000795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2025.114572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Sungyeol & Jun, Eunju & Hwang, IlSoon & Starz, Anne & Mazour, Tom & Chang, SoonHeung & Burkart, Alex R., 2009. "Fourteen lessons learned from the successful nuclear power program of the Republic of Korea," Energy Policy, Elsevier, vol. 37(12), pages 5494-5508, December.
    2. Locatelli, Giorgio & Mancini, Mauro, 2010. "Small-medium sized nuclear coal and gas power plant: A probabilistic analysis of their financial performances and influence of CO2 cost," Energy Policy, Elsevier, vol. 38(10), pages 6360-6374, October.
    3. Grubler, Arnulf, 2010. "The costs of the French nuclear scale-up: A case of negative learning by doing," Energy Policy, Elsevier, vol. 38(9), pages 5174-5188, September.
    4. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mignacca, B. & Locatelli, G., 2020. "Economics and finance of Small Modular Reactors: A systematic review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    3. Wealer, B. & Bauer, S. & Hirschhausen, C.v. & Kemfert, C. & Göke, L., 2021. "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Giorgio Locatelli, 2018. "Why are Megaprojects, Including Nuclear Power Plants, Delivered Overbudget and Late? Reasons and Remedies," Papers 1802.07312, arXiv.org.
    5. Jewell, Jessica & Vetier, Marta & Garcia-Cabrera, Daniel, 2019. "The international technological nuclear cooperation landscape: A new dataset and network analysis," Energy Policy, Elsevier, vol. 128(C), pages 838-852.
    6. Mignacca, Benito & Locatelli, Giorgio & Sainati, Tristano, 2020. "Deeds not words: Barriers and remedies for Small Modular nuclear Reactors," Energy, Elsevier, vol. 206(C).
    7. Van Hee, Nick & Peremans, Herbert & Nimmegeers, Philippe, 2024. "Economic potential and barriers of small modular reactors in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    8. Steigerwald, Björn & Weibezahn, Jens & Slowik, Martin & von Hirschhausen, Christian, 2023. "Uncertainties in estimating production costs of future nuclear technologies: A model-based analysis of small modular reactors," Energy, Elsevier, vol. 281(C).
    9. Herve Kabanda & Alex Romard & Fuze Yurtsever & Anjali Wadhera & Joshua Andrews & Craig Merrett, 2021. "Construction Time Estimation Function for Canadian Utility Scale Power Plants," Energies, MDPI, vol. 14(17), pages 1-16, August.
    10. Christian von Hirschhausen, 2022. "Nuclear Power in the Twenty-first Century (Part II) - The Economic Value of Plutonium," Discussion Papers of DIW Berlin 2011, DIW Berlin, German Institute for Economic Research.
    11. Charlie Wilson & Arnulf Grubler, 2011. "Lessons from the history of technological change for clean energy scenarios and policies," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 165-184, August.
    12. Matthias Weitzel, 2017. "The role of uncertainty in future costs of key CO2 abatement technologies: a sensitivity analysis with a global computable general equilibrium model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 153-173, January.
    13. Bartnik, Ryszard & Hnydiuk-Stefan, Anna, 2025. "Evaluation of energy and economic efficiency in upgrading coal-fired power plants: Integrating HTGR reactors and turboexpanders for supercritical steam parameters," Energy, Elsevier, vol. 318(C).
    14. Erwan Hermawan & Usman Sudjadi, 2022. "Integrated Nuclear-Renewable Energy System for Industrialization in West Nusa Tenggara Province, Indonesia: Economic, Potential Site, and Policy Recommendation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 146-159, July.
    15. Mauger, Romain, 2018. "The voluminous energy transition legal framework in France and the question of its recognition as a branch of law," Energy Policy, Elsevier, vol. 122(C), pages 499-505.
    16. Benjamin K. Sovacool, 2016. "The history and politics of energy transitions: Comparing contested views and finding common ground," WIDER Working Paper Series wp-2016-81, World Institute for Development Economic Research (UNU-WIDER).
    17. Sarjiya, & Budi, Rizki Firmansyah Setya & Hadi, Sasongko Pramono, 2019. "Game theory for multi-objective and multi-period framework generation expansion planning in deregulated markets," Energy, Elsevier, vol. 174(C), pages 323-330.
    18. Wei, Max & Smith, Sarah Josephine & Sohn, Michael D., 2017. "Non-constant learning rates in retrospective experience curve analyses and their correlation to deployment programs," Energy Policy, Elsevier, vol. 107(C), pages 356-369.
    19. Thellufsen, Jakob Zinck & Lund, Henrik & Mathiesen, Brian Vad & Østergaard, Poul Alberg & Sorknæs, Peter & Nielsen, Steffen & Madsen, Poul Thøis & Andresen, Gorm Bruun, 2024. "Cost and system effects of nuclear power in carbon-neutral energy systems," Applied Energy, Elsevier, vol. 371(C).
    20. Elena Verdolini & Laura Díaz Anadón & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2018. "Future Prospects for Energy Technologies: Insights from Expert Elicitations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 133-153.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:202:y:2025:i:c:s0301421525000795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.