IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3793-d1703665.html
   My bibliography  Save this article

A Deep Learning-Based Diagnostic Framework for Shaft Earthing Brush Faults in Large Turbine Generators

Author

Listed:
  • Katudi Oupa Mailula

    (Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa)

  • Akshay Kumar Saha

    (Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa)

Abstract

Large turbine generators rely on shaft earthing brushes to safely divert harmful shaft currents to ground, protecting bearings from electrical damage. This paper presents a novel deep learning-based diagnostic framework to detect and classify faults in shaft earthing brushes of large turbine generators. A key innovation lies in the use of FFT-derived spectrograms from both voltage and current waveforms as dual-channel inputs to the CNN, enabling automatic feature extraction of time–frequency patterns associated with different SEB fault types. The proposed framework combines advanced signal processing and convolutional neural networks (CNNs) to automatically recognize fault-related patterns in shaft grounding current and voltage signals. In the approach, raw time-domain signals are converted into informative time–frequency representations, which serve as input to a CNN model trained to distinguish normal and faulty conditions. The framework was evaluated using data from a fleet of large-scale generators under various brush fault scenarios (e.g., increased brush contact resistance, loss of brush contact, worn out brushes, and brush contamination). Experimental results demonstrate high fault detection accuracy (exceeding 98%) and the reliable identification of different fault types, outperforming conventional threshold-based monitoring techniques. The proposed deep learning framework offers a novel intelligent monitoring solution for predictive maintenance of turbine generators. The contributions include the following: (1) the development of a specialized deep learning model for shaft earthing brush fault diagnosis, (2) a systematic methodology for feature extraction from shaft current signals, and (3) the validation of the framework on real-world fault data. This work enables the early detection of brush degradation, thereby reducing unplanned downtime and maintenance costs in power generation facilities.

Suggested Citation

  • Katudi Oupa Mailula & Akshay Kumar Saha, 2025. "A Deep Learning-Based Diagnostic Framework for Shaft Earthing Brush Faults in Large Turbine Generators," Energies, MDPI, vol. 18(14), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3793-:d:1703665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katudi Oupa Mailula & Akshay K. Saha, 2025. "A Comprehensive Review of Shaft Voltages and Bearing Currents, Measurements and Monitoring Systems in Large Turbogenerators," Energies, MDPI, vol. 18(8), pages 1-45, April.
    2. Katudi Oupa Mailula & Akshay Kumar Saha, 2025. "Advanced Diagnostic Techniques for Earthing Brush Faults Detection in Large Turbine Generators," Energies, MDPI, vol. 18(14), pages 1-23, July.
    3. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    2. Ye, Feng & Ezzat, Ahmed Aziz, 2024. "Icing detection and prediction for wind turbines using multivariate sensor data and machine learning," Renewable Energy, Elsevier, vol. 231(C).
    3. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    4. Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    5. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    6. Zhou, Rui & Li, Yanting & Lin, Xinhua, 2025. "A clustered federated learning framework for collaborative fault diagnosis of wind turbines," Applied Energy, Elsevier, vol. 377(PB).
    7. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    8. James Roetzer & Xingjie Li & John Hall, 2024. "Review of Data-Driven Models in Wind Energy: Demonstration of Blade Twist Optimization Based on Aerodynamic Loads," Energies, MDPI, vol. 17(16), pages 1-20, August.
    9. Adaiton Oliveira-Filho & Monelle Comeau & James Cave & Charbel Nasr & Pavel Côté & Antoine Tahan, 2024. "Wind Turbine SCADA Data Imbalance: A Review of Its Impact on Health Condition Analyses and Mitigation Strategies," Energies, MDPI, vol. 18(1), pages 1-23, December.
    10. Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
    11. Katudi Oupa Mailula & Akshay Kumar Saha, 2025. "Advanced Diagnostic Techniques for Earthing Brush Faults Detection in Large Turbine Generators," Energies, MDPI, vol. 18(14), pages 1-23, July.
    12. Xiao Wang & Zheng Zheng & Guoqian Jiang & Qun He & Ping Xie, 2022. "Detecting Wind Turbine Blade Icing with a Multiscale Long Short-Term Memory Network," Energies, MDPI, vol. 15(8), pages 1-19, April.
    13. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.
    14. Silvio Simani & Saverio Farsoni & Paolo Castaldi, 2023. "RETRACTED: Supervisory Control and Data Acquisition for Fault Diagnosis of Wind Turbines via Deep Transfer Learning," Energies, MDPI, vol. 16(9), pages 1-22, April.
    15. Rami Al-Hajj & Ali Assi & Bilel Neji & Raymond Ghandour & Zaher Al Barakeh, 2023. "Transfer Learning for Renewable Energy Systems: A Survey," Sustainability, MDPI, vol. 15(11), pages 1-28, June.
    16. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2023. "A multi-learner neural network approach to wind turbine fault diagnosis with imbalanced data," Renewable Energy, Elsevier, vol. 208(C), pages 420-430.
    17. Tao, Tao & Liu, Yongqian & Qiao, Yanhui & Gao, Linyue & Lu, Jiaoyang & Zhang, Ce & Wang, Yu, 2021. "Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 1004-1013.
    18. Gürdal Ertek & Lakshmi Kailas, 2021. "Analyzing a Decade of Wind Turbine Accident News with Topic Modeling," Sustainability, MDPI, vol. 13(22), pages 1-34, November.
    19. Chuanhao Wang & Yongjian Sun & Xiaohong Wang, 2024. "Image deep learning in fault diagnosis of mechanical equipment," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2475-2515, August.
    20. Bai, Xinjian & Tao, Tao & Gao, Linyue & Tao, Cheng & Liu, Yongqian, 2023. "Wind turbine blade icing diagnosis using RFECV-TSVM pseudo-sample processing," Renewable Energy, Elsevier, vol. 211(C), pages 412-419.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3793-:d:1703665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.