Author
Listed:
- Katudi Oupa Mailula
(Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa)
- Akshay Kumar Saha
(Discipline of Electrical, Electronic and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa)
Abstract
Large steam turbine generators are increasingly vulnerable to damage from shaft voltages and bearing currents due to the widespread adoption of modern power electronic excitation systems and more flexible operating regimes. Earthing brushes provide a critical path for discharging these shaft currents and voltages, but their effectiveness depends on the timely detection of brush degradation or faults. Conventional monitoring of shaft voltage and current is often rudimentary, typically limited to peak readings, making it challenging to identify specific fault conditions before mechanical damage occurs. This study addresses this gap by systematically analyzing shaft voltage and current signals under various controlled earthing brush fault conditions (floating brushes, worn brushes, and oil/dust contamination) in several large turbine generators. Experimental site tests identified distinct electrical signatures associated with each fault type, demonstrating that online shaft voltage and current measurements can reliably detect and classify earthing brush faults. These include unique RMS, DC, and harmonic patterns in both voltage and current signals, enabling accurate fault classification. These findings highlight the potential for more proactive maintenance and condition-based monitoring, which can reduce unplanned outages and improve the reliability and safety of power generation systems.
Suggested Citation
Katudi Oupa Mailula & Akshay Kumar Saha, 2025.
"Advanced Diagnostic Techniques for Earthing Brush Faults Detection in Large Turbine Generators,"
Energies, MDPI, vol. 18(14), pages 1-23, July.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:14:p:3597-:d:1697136
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3597-:d:1697136. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.