IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3781-d1703348.html
   My bibliography  Save this article

A Novel Renewable Energy Scenario Generation Method Based on Multi-Resolution Denoising Diffusion Probabilistic Models

Author

Listed:
  • Donglin Li

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
    These authors are co-first author.)

  • Xiaoxin Zhao

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
    These authors are co-first author.)

  • Weimao Xu

    (Economic Research Institute, State Grid Liaoning Electric Power Company, Shenyang 110015, China)

  • Chao Ge

    (Economic Research Institute, State Grid Liaoning Electric Power Company, Shenyang 110015, China)

  • Chunzheng Li

    (Economic Research Institute, State Grid Liaoning Electric Power Company, Shenyang 110015, China)

Abstract

As the global energy system accelerates its transition toward a low-carbon economy, renewable energy sources (RESs), such as wind and photovoltaic power, are rapidly replacing traditional fossil fuels. These RESs are becoming a critical element of deeply decarbonized power systems (DDPSs). However, the inherent non-stationarity, multi-scale volatility, and uncontrollability of RES output significantly increase the risk of source–load imbalance, posing serious challenges to the reliability and economic efficiency of power systems. Scenario generation technology has emerged as a critical tool to quantify uncertainty and support dispatch optimization. Nevertheless, conventional scenario generation methods often fail to produce highly credible wind and solar output scenarios. To address this gap, this paper proposes a novel renewable energy scenario generation method based on a multi-resolution diffusion model. To accurately capture fluctuation characteristics across multiple time scales, we introduce a diffusion model in conjunction with a multi-scale time series decomposition approach, forming a multi-stage diffusion modeling framework capable of representing both long-term trends and short-term fluctuations in RES output. A cascaded conditional diffusion modeling framework is designed, leveraging historical trend information as a conditioning input to enhance the physical consistency of generated scenarios. Furthermore, a forecast-guided fusion strategy is proposed to jointly model long-term and short-term dynamics, thereby improving the generalization capability of long-term scenario generation. Simulation results demonstrate that MDDPM achieves a Wasserstein Distance (WD) of 0.0156 in the wind power scenario, outperforming DDPM (WD = 0.0185) and MC (WD = 0.0305). Additionally, MDDPM improves the Global Coverage Rate (GCR) by 15% compared to MC and other baselines.

Suggested Citation

  • Donglin Li & Xiaoxin Zhao & Weimao Xu & Chao Ge & Chunzheng Li, 2025. "A Novel Renewable Energy Scenario Generation Method Based on Multi-Resolution Denoising Diffusion Probabilistic Models," Energies, MDPI, vol. 18(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3781-:d:1703348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3781/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qi, Yuchen & Hu, Wei & Dong, Yu & Fan, Yue & Dong, Ling & Xiao, Ming, 2020. "Optimal configuration of concentrating solar power in multienergy power systems with an improved variational autoencoder," Applied Energy, Elsevier, vol. 274(C).
    2. Li, Zilu & Peng, Xiangang & Cui, Wenbo & Xu, Yilin & Liu, Jianan & Yuan, Haoliang & Lai, Chun Sing & Lai, Loi Lei, 2024. "A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features," Applied Energy, Elsevier, vol. 363(C).
    3. Dong, Wei & Chen, Xianqing & Yang, Qiang, 2022. "Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability," Applied Energy, Elsevier, vol. 308(C).
    4. Pereira, Edinaldo José da Silva & Pinho, João Tavares & Galhardo, Marcos André Barros & Macêdo, Wilson Negrão, 2014. "Methodology of risk analysis by Monte Carlo Method applied to power generation with renewable energy," Renewable Energy, Elsevier, vol. 69(C), pages 347-355.
    5. Zhao, Wei & Shao, Zhen & Yang, Shanlin & Lu, Xinhui, 2025. "A novel conditional diffusion model for joint source-load scenario generation considering both diversity and controllability," Applied Energy, Elsevier, vol. 377(PC).
    6. Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
    7. Díaz, Guzmán & Gómez-Aleixandre, Javier & Coto, José, 2016. "Wind power scenario generation through state-space specifications for uncertainty analysis of wind power plants," Applied Energy, Elsevier, vol. 162(C), pages 21-30.
    8. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    9. Zhang, Xiangyu & Glaws, Andrew & Cortiella, Alexandre & Emami, Patrick & King, Ryan N., 2025. "Deep generative models in energy system applications: Review, challenges, and future directions," Applied Energy, Elsevier, vol. 380(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiying Cao & Junzhou Wang & Sui Peng & Wenxuan Pan & Qing Sun & Junjie Tang, 2025. "Reserve Planning Method for High-Penetration Wind Power Systems Considering Typhoon Weather," Energies, MDPI, vol. 18(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Zhong-kai & Wang, Xin & Niu, Wen-jing, 2025. "Complementary operation optimization of cascade hydropower reservoirs and photovoltaic energy using cooperation search algorithm and conditional generative adversarial networks," Energy, Elsevier, vol. 328(C).
    2. Liuqing Gu & Jian Xu & Deping Ke & Youhan Deng & Xiaojun Hua & Yi Yu, 2024. "Short-Term Output Scenario Generation of Renewable Energy Using Transformer–Wasserstein Generative Adversarial Nets-Gradient Penalty," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
    3. Zhang, Xiangyu & Glaws, Andrew & Cortiella, Alexandre & Emami, Patrick & King, Ryan N., 2025. "Deep generative models in energy system applications: Review, challenges, and future directions," Applied Energy, Elsevier, vol. 380(C).
    4. Elinor Ginzburg-Ganz & Eden Dina Horodi & Omar Shadafny & Uri Savir & Ram Machlev & Yoash Levron, 2025. "Statistical Foundations of Generative AI for Optimal Control Problems in Power Systems: Comprehensive Review and Future Directions," Energies, MDPI, vol. 18(10), pages 1-54, May.
    5. Ye, Lin & Peng, Yishu & Li, Yilin & Li, Zhuo, 2024. "A novel informer-time-series generative adversarial networks for day-ahead scenario generation of wind power," Applied Energy, Elsevier, vol. 364(C).
    6. Lingxue Lin & Zuowei You & Fengjiao Li & Jun Liu & Chengwei Yang, 2025. "A Two-Stage Hidden Markov Model for Medium- to Long-Term Multiple Wind Farm Power Scenario Generation," Energies, MDPI, vol. 18(8), pages 1-15, April.
    7. Hu, Jinxing & Li, Hongru, 2022. "A transfer learning-based scenario generation method for stochastic optimal scheduling of microgrid with newly-built wind farm," Renewable Energy, Elsevier, vol. 185(C), pages 1139-1151.
    8. Kun Zheng & Zhiyuan Sun & Yi Song & Chen Zhang & Chunyu Zhang & Fuhao Chang & Dechang Yang & Xueqian Fu, 2025. "Stochastic Scenario Generation Methods for Uncertainty in Wind and Photovoltaic Power Outputs: A Comprehensive Review," Energies, MDPI, vol. 18(3), pages 1-31, January.
    9. Chen, Xianqing & Yang, Lingfang & Dong, Wei & Yang, Qiang, 2024. "Net-zero carbon emission oriented Bi-level optimal capacity planning of integrated energy system considering carbon capture and hydrogen facilities," Renewable Energy, Elsevier, vol. 237(PB).
    10. Chen, Xianqing & Dong, Wei & Yang, Qiang, 2022. "Robust optimal capacity planning of grid-connected microgrid considering energy management under multi-dimensional uncertainties," Applied Energy, Elsevier, vol. 323(C).
    11. Zhang, Hanyu & Zandehshahvar, Reza & Tanneau, Mathieu & Van Hentenryck, Pascal, 2025. "Weather-informed probabilistic forecasting and scenario generation in power systems," Applied Energy, Elsevier, vol. 384(C).
    12. Ali Keyvandarian & Ahmed Saif, 2024. "An Adaptive Distributionally Robust Optimization Approach for Optimal Sizing of Hybrid Renewable Energy Systems," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 2055-2082, November.
    13. Li, Zilu & Peng, Xiangang & Cui, Wenbo & Xu, Yilin & Liu, Jianan & Yuan, Haoliang & Lai, Chun Sing & Lai, Loi Lei, 2024. "A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features," Applied Energy, Elsevier, vol. 363(C).
    14. Liang Ma & Shigong Jiang & Yi Song & Chenyi Si & Xiaohan Li, 2025. "Multi-Time Scale Scenario Generation for Source–Load Modeling Through Temporal Generative Adversarial Networks," Energies, MDPI, vol. 18(6), pages 1-18, March.
    15. Dong, Wei & Chen, Xianqing & Yang, Qiang, 2022. "Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability," Applied Energy, Elsevier, vol. 308(C).
    16. Daniel Fernández Valderrama & Juan Ignacio Guerrero Alonso & Carlos León de Mora & Michela Robba, 2024. "Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems," Energies, MDPI, vol. 17(21), pages 1-14, October.
    17. Zhao, Wei & Shao, Zhen & Yang, Shanlin & Lu, Xinhui, 2025. "A novel conditional diffusion model for joint source-load scenario generation considering both diversity and controllability," Applied Energy, Elsevier, vol. 377(PC).
    18. He, Jiaming & Tan, Qinliang & Lv, Hanyu, 2025. "Data-driven climate resilience assessment for distributed energy systems using diffusion transformer and polynomial expansions," Applied Energy, Elsevier, vol. 380(C).
    19. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3781-:d:1703348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.