IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p1917-d1631385.html
   My bibliography  Save this article

A Two-Stage Hidden Markov Model for Medium- to Long-Term Multiple Wind Farm Power Scenario Generation

Author

Listed:
  • Lingxue Lin

    (College Elect Power, South China University of Technology, Guangzhou 510640, China)

  • Zuowei You

    (College Elect Power, South China University of Technology, Guangzhou 510640, China)

  • Fengjiao Li

    (College Elect Power, South China University of Technology, Guangzhou 510640, China)

  • Jun Liu

    (College Elect Power, South China University of Technology, Guangzhou 510640, China)

  • Chengwei Yang

    (College Elect Power, South China University of Technology, Guangzhou 510640, China)

Abstract

Medium- to long-term wind power output scenarios are crucial for power system planning and operational simulations. This paper proposes a two-stage hidden Markov model-based approach for modeling the time series output of multiple wind farms. First, based on the key features of the wind power output sequence, the daily typical patterns of wind power output are extracted. Then, the process of simulating the wind power output time-series is modeled as a two-layer temporal model. The upper layer uses a discrete hidden Markov model to describe the day-to-day transition process of wind power output patterns and the lower layer uses a Gaussian mixture hidden Markov model to describe the fluctuation process of wind power output values within each output pattern. Finally, the upper models corresponding to each quarter and the lower models corresponding to each pattern are trained respectively and the time-series scenarios of wind power output for multiple wind farms are generated quarter-by-quarter and day-by-day through Monte Carlo sampling. Validation using real-world wind power data demonstrates that the proposed method can effectively generate medium- to long-term output scenarios for multiple wind farms. Compared to traditional methods, the proposed method shows improvements in terms of accuracy, statistical characteristics, temporal correlation, and mutual correlation.

Suggested Citation

  • Lingxue Lin & Zuowei You & Fengjiao Li & Jun Liu & Chengwei Yang, 2025. "A Two-Stage Hidden Markov Model for Medium- to Long-Term Multiple Wind Farm Power Scenario Generation," Energies, MDPI, vol. 18(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1917-:d:1631385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/1917/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/1917/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Mucun & Feng, Cong & Zhang, Jie, 2019. "Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation," Applied Energy, Elsevier, vol. 256(C).
    2. Qi, Yuchen & Hu, Wei & Dong, Yu & Fan, Yue & Dong, Ling & Xiao, Ming, 2020. "Optimal configuration of concentrating solar power in multienergy power systems with an improved variational autoencoder," Applied Energy, Elsevier, vol. 274(C).
    3. Dumas, Jonathan & Wehenkel, Antoine & Lanaspeze, Damien & Cornélusse, Bertrand & Sutera, Antonio, 2022. "A deep generative model for probabilistic energy forecasting in power systems: normalizing flows," Applied Energy, Elsevier, vol. 305(C).
    4. Hilger, Hannes & Witthaut, Dirk & Dahmen, Manuel & Rydin Gorjão, Leonardo & Trebbien, Julius & Cramer, Eike, 2024. "Multivariate scenario generation of day-ahead electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 367(C).
    5. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    6. Dong, Wei & Chen, Xianqing & Yang, Qiang, 2022. "Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability," Applied Energy, Elsevier, vol. 308(C).
    7. Bakhtiari, Hamed & Zhong, Jin & Alvarez, Manuel, 2021. "Predicting the stochastic behavior of uncertainty sources in planning a stand-alone renewable energy-based microgrid using Metropolis–coupled Markov chain Monte Carlo simulation," Applied Energy, Elsevier, vol. 290(C).
    8. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiangyu & Glaws, Andrew & Cortiella, Alexandre & Emami, Patrick & King, Ryan N., 2025. "Deep generative models in energy system applications: Review, challenges, and future directions," Applied Energy, Elsevier, vol. 380(C).
    2. Ye, Lin & Peng, Yishu & Li, Yilin & Li, Zhuo, 2024. "A novel informer-time-series generative adversarial networks for day-ahead scenario generation of wind power," Applied Energy, Elsevier, vol. 364(C).
    3. Liuqing Gu & Jian Xu & Deping Ke & Youhan Deng & Xiaojun Hua & Yi Yu, 2024. "Short-Term Output Scenario Generation of Renewable Energy Using Transformer–Wasserstein Generative Adversarial Nets-Gradient Penalty," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
    4. Elinor Ginzburg-Ganz & Eden Dina Horodi & Omar Shadafny & Uri Savir & Ram Machlev & Yoash Levron, 2025. "Statistical Foundations of Generative AI for Optimal Control Problems in Power Systems: Comprehensive Review and Future Directions," Energies, MDPI, vol. 18(10), pages 1-54, May.
    5. Li, Zilu & Peng, Xiangang & Cui, Wenbo & Xu, Yilin & Liu, Jianan & Yuan, Haoliang & Lai, Chun Sing & Lai, Loi Lei, 2024. "A novel scenario generation method of renewable energy using improved VAEGAN with controllable interpretable features," Applied Energy, Elsevier, vol. 363(C).
    6. Chen, Xianqing & Yang, Lingfang & Dong, Wei & Yang, Qiang, 2024. "Net-zero carbon emission oriented Bi-level optimal capacity planning of integrated energy system considering carbon capture and hydrogen facilities," Renewable Energy, Elsevier, vol. 237(PB).
    7. Ali Keyvandarian & Ahmed Saif, 2024. "An Adaptive Distributionally Robust Optimization Approach for Optimal Sizing of Hybrid Renewable Energy Systems," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 2055-2082, November.
    8. Daniel Fernández Valderrama & Juan Ignacio Guerrero Alonso & Carlos León de Mora & Michela Robba, 2024. "Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems," Energies, MDPI, vol. 17(21), pages 1-14, October.
    9. Zhao, Wei & Shao, Zhen & Yang, Shanlin & Lu, Xinhui, 2025. "A novel conditional diffusion model for joint source-load scenario generation considering both diversity and controllability," Applied Energy, Elsevier, vol. 377(PC).
    10. Markos A. Kousounadis-Knousen & Ioannis K. Bazionis & Athina P. Georgilaki & Francky Catthoor & Pavlos S. Georgilakis, 2023. "A Review of Solar Power Scenario Generation Methods with Focus on Weather Classifications, Temporal Horizons, and Deep Generative Models," Energies, MDPI, vol. 16(15), pages 1-29, July.
    11. He, Jiaming & Tan, Qinliang & Lv, Hanyu, 2025. "Data-driven climate resilience assessment for distributed energy systems using diffusion transformer and polynomial expansions," Applied Energy, Elsevier, vol. 380(C).
    12. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Ji Han & Li Li & Huihui Song & Meng Liu & Zongxun Song & Yanbin Qu, 2022. "An Equivalent Model of Wind Farm Based on Multivariate Multi-Scale Entropy and Multi-View Clustering," Energies, MDPI, vol. 15(16), pages 1-17, August.
    14. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    15. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    16. Mohamed Zribi & Muthana Alrifai & Mohamed Rayan, 2017. "Sliding Mode Control of a Variable- Speed Wind Energy Conversion System Using a Squirrel Cage Induction Generator," Energies, MDPI, vol. 10(5), pages 1-21, May.
    17. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    18. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    19. Jia, Mengshuo & Huang, Shaowei & Wang, Zhiwen & Shen, Chen, 2021. "Privacy-preserving distributed parameter estimation for probability distribution of wind power forecast error," Renewable Energy, Elsevier, vol. 163(C), pages 1318-1332.
    20. Jianzhou Wang & Shuai Wang & Mengzheng Lv & He Jiang, 2024. "Forecasting VaR and ES by using deep quantile regression, GANs-based scenario generation, and heterogeneous market hypothesis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:1917-:d:1631385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.