IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3764-d1702809.html
   My bibliography  Save this article

A Methodology for Turbine-Level Possible Power Prediction and Uncertainty Estimations Using Farm-Wide Autoregressive Information on High-Frequency Data

Author

Listed:
  • Francisco Javier Jara Ávila

    (Acoustics and Vibrations Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
    Artificial Intelligence Lab, Vrije Universiteit Brussel, 1050 Brussels, Belgium
    OWI-Lab, Vrije Universiteit Brussel, 1050 Brussels, Belgium)

  • Timothy Verstraeten

    (Acoustics and Vibrations Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
    Artificial Intelligence Lab, Vrije Universiteit Brussel, 1050 Brussels, Belgium
    OWI-Lab, Vrije Universiteit Brussel, 1050 Brussels, Belgium)

  • Pieter Jan Daems

    (Acoustics and Vibrations Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
    OWI-Lab, Vrije Universiteit Brussel, 1050 Brussels, Belgium)

  • Ann Nowé

    (Artificial Intelligence Lab, Vrije Universiteit Brussel, 1050 Brussels, Belgium)

  • Jan Helsen

    (Acoustics and Vibrations Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
    OWI-Lab, Vrije Universiteit Brussel, 1050 Brussels, Belgium
    Flanders Make, 3001 Leuven, Belgium)

Abstract

Wind farm performance monitoring has traditionally relied on deterministic models, such as power curves or machine learning approaches, which often fail to account for farm-wide behavior and the uncertainty quantification necessary for the reliable detection of underperformance. To overcome these limitations, we propose a probabilistic methodology for turbine-level active power prediction and uncertainty estimation using high-frequency SCADA data and farm-wide autoregressive information. The method leverages a Stochastic Variational Gaussian Process with a Linear Model of Coregionalization, incorporating physical models like manufacturer power curves as mean functions and enabling flexible modeling of active power and its associated variance. The approach was validated on a wind farm in the Belgian North Sea comprising over 40 turbines, using only 15 days of data for training. The results demonstrate that the proposed method improves predictive accuracy over the manufacturer’s power curve, achieving a reduction in error measurements of around 1%. Improvements of around 5% were seen in dominant wind directions (200°–300°) using 2 and 3 Latent GPs, with similar improvements observed on the test set. The model also successfully reconstructs wake effects, with Energy Ratio estimates closely matching SCADA-derived values, and provides meaningful uncertainty estimates and posterior turbine correlations. These results demonstrate that the methodology enables interpretable, data-efficient, and uncertainty-aware turbine-level power predictions, suitable for advanced wind farm monitoring and control applications, enabling a more sensitive underperformance detection.

Suggested Citation

  • Francisco Javier Jara Ávila & Timothy Verstraeten & Pieter Jan Daems & Ann Nowé & Jan Helsen, 2025. "A Methodology for Turbine-Level Possible Power Prediction and Uncertainty Estimations Using Farm-Wide Autoregressive Information on High-Frequency Data," Energies, MDPI, vol. 18(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3764-:d:1702809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meyer, Angela, 2021. "Multi-target normal behaviour models for wind farm condition monitoring," Applied Energy, Elsevier, vol. 300(C).
    2. Zhang, Jie & Jain, Rishabh & Hodge, Bri-Mathias, 2016. "A data-driven method to characterize turbulence-caused uncertainty in wind power generation," Energy, Elsevier, vol. 112(C), pages 1139-1152.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Knes & Phong B. Dao, 2024. "Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach," Energies, MDPI, vol. 17(20), pages 1-21, October.
    2. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    3. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    4. Adaiton Oliveira-Filho & Monelle Comeau & James Cave & Charbel Nasr & Pavel Côté & Antoine Tahan, 2024. "Wind Turbine SCADA Data Imbalance: A Review of Its Impact on Health Condition Analyses and Mitigation Strategies," Energies, MDPI, vol. 18(1), pages 1-23, December.
    5. Dao, Phong B. & Barszcz, Tomasz & Staszewski, Wieslaw J., 2024. "Anomaly detection of wind turbines based on stationarity analysis of SCADA data," Renewable Energy, Elsevier, vol. 232(C).
    6. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.
    7. Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
    8. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    9. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    10. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    11. Stefan Jonas & Dimitrios Anagnostos & Bernhard Brodbeck & Angela Meyer, 2023. "Vibration Fault Detection in Wind Turbines Based on Normal Behaviour Models without Feature Engineering," Energies, MDPI, vol. 16(4), pages 1-16, February.
    12. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    13. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Bai, Xinjian & Han, Shuang & Kang, Zijian & Tao, Tao & Pang, Cong & Dai, Shixian & Liu, Yongqian, 2024. "Wind turbine gearbox oil temperature feature extraction and condition monitoring based on energy flow," Applied Energy, Elsevier, vol. 371(C).
    15. Silvio Simani & Saverio Farsoni & Paolo Castaldi, 2023. "RETRACTED: Supervisory Control and Data Acquisition for Fault Diagnosis of Wind Turbines via Deep Transfer Learning," Energies, MDPI, vol. 16(9), pages 1-22, April.
    16. Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Ouassaid, Mohammed, 2023. "Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window," Energy, Elsevier, vol. 263(PE).
    17. Davide Astolfi, 2023. "Wind Turbine Drivetrain Condition Monitoring through SCADA-Collected Temperature Data: Discussion of Selected Recent Papers," Energies, MDPI, vol. 16(9), pages 1-4, April.
    18. Zhang, Wanwan & Vatn, Jørn & Rasheed, Adil, 2025. "Gearbox pump failure prognostics in offshore wind turbine by an integrated data-driven model," Applied Energy, Elsevier, vol. 380(C).
    19. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Condition monitoring of wind turbine blades based on self-supervised health representation learning: A conducive technique to effective and reliable utilization of wind energy," Applied Energy, Elsevier, vol. 313(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3764-:d:1702809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.