IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3744-d1701975.html
   My bibliography  Save this article

An Empirically Validated Framework for Automated and Personalized Residential Energy-Management Integrating Large Language Models and the Internet of Energy

Author

Listed:
  • Vinícius Pereira Gonçalves

    (Department of Electrical Engineering, University of Brasilia, Federal District, Brasilia 70910-900, Brazil)

  • Andre Luiz Marques Serrano

    (Department of Electrical Engineering, University of Brasilia, Federal District, Brasilia 70910-900, Brazil)

  • Gabriel Arquelau Pimenta Rodrigues

    (Department of Electrical Engineering, University of Brasilia, Federal District, Brasilia 70910-900, Brazil)

  • Matheus Noschang de Oliveira

    (Department of Electrical Engineering, University of Brasilia, Federal District, Brasilia 70910-900, Brazil)

  • Rodolfo Ipolito Meneguette

    (Institute of Mathematical and Computer Sciences, University of Sao Paulo, São Carlos 13566-590, Brazil)

  • Guilherme Dantas Bispo

    (Department of Electrical Engineering, University of Brasilia, Federal District, Brasilia 70910-900, Brazil)

  • Maria Gabriela Mendonça Peixoto

    (Department of Electrical Engineering, University of Brasilia, Federal District, Brasilia 70910-900, Brazil)

  • Geraldo Pereira Rocha Filho

    (Department of Exact and Technological Sciences, State University of Southwest Bahia, Vitória da Conquista 45083-900, Brazil)

Abstract

The growing global demand for energy has resulted in a demand for innovative strategies for residential energy management. This study explores a novel framework—MELISSA (Modern Energy LLM-IoE Smart Solution for Automation)—that integrates Internet of Things (IoT) sensor networks with Large Language Models (LLMs) to optimize household energy consumption through intelligent automation and personalized interactions. The system combines real-time monitoring, machine learning algorithms for behavioral analysis, and natural language processing to deliver personalized, actionable recommendations through a conversational interface. A 12-month randomized controlled trial was conducted with 100 households, which were stratified across four socioeconomic quintiles in metropolitan areas. The experimental design included the continuous collection of IoT data. Baseline energy consumption was measured and compared with post-intervention usage to assess system impact. Statistical analyses included k-means clustering, multiple linear regression, and paired t -tests. The system achieved its intended goal, with a statistically significant reduction of 5.66% in energy consumption (95% CI: 5.21–6.11%, p < 0.001 ) relative to baseline, alongside high user satisfaction (mean = 7.81, SD = 1.24). Clustering analysis ( k = 4 , silhouette = 0.68) revealed four distinct energy-consumption profiles. Multiple regression analysis ( R 2 = 0.68 , p < 0.001 ) identified household size, ambient temperature, and frequency of user engagement as the principal determinants of consumption. This research advances the theoretical understanding of human–AI interaction in energy management and provides robust empirical evidence of the effectiveness of LLM-mediated behavioral interventions. The findings underscore the potential of conversational AI applications in smart homes and have practical implications for optimization of residential energy use.

Suggested Citation

  • Vinícius Pereira Gonçalves & Andre Luiz Marques Serrano & Gabriel Arquelau Pimenta Rodrigues & Matheus Noschang de Oliveira & Rodolfo Ipolito Meneguette & Guilherme Dantas Bispo & Maria Gabriela Mendo, 2025. "An Empirically Validated Framework for Automated and Personalized Residential Energy-Management Integrating Large Language Models and the Internet of Energy," Energies, MDPI, vol. 18(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3744-:d:1701975
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3744/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3744/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    2. Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
    3. André Luiz Marques Serrano & Patricia Helena dos Santos Martins & Guilherme Fay Vergara & Guilherme Dantas Bispo & Gabriel Arquelau Pimenta Rodrigues & Letícia Rezende Mosquéra & Matheus Noschang de O, 2025. "Forecasting Ethanol and Gasoline Consumption in Brazil: Advanced Temporal Models for Sustainable Energy Management," Energies, MDPI, vol. 18(6), pages 1-20, March.
    4. Zhou, Kaile & Fu, Chao & Yang, Shanlin, 2016. "Big data driven smart energy management: From big data to big insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 215-225.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miriam Benedetti & Francesca Bonfà & Vito Introna & Annalisa Santolamazza & Stefano Ubertini, 2019. "Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications," Energies, MDPI, vol. 12(20), pages 1-28, October.
    2. Carol Vigurs & Chris Maidment & Michael Fell & David Shipworth, 2021. "Customer Privacy Concerns as a Barrier to Sharing Data about Energy Use in Smart Local Energy Systems: A Rapid Realist Review," Energies, MDPI, vol. 14(5), pages 1-33, February.
    3. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Nik, Vahid M. & Moazami, Amin, 2021. "Using collective intelligence to enhance demand flexibility and climate resilience in urban areas," Applied Energy, Elsevier, vol. 281(C).
    6. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    8. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    9. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    10. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    12. Ziad Ragab & Ehsan Pashajavid & Sumedha Rajakaruna, 2024. "Optimal Sizing and Economic Analysis of Community Battery Systems Considering Sensitivity and Uncertainty Factors," Energies, MDPI, vol. 17(18), pages 1-20, September.
    13. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    14. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    15. William Paul Bell & John Foster, 2017. "Using solar PV feed-in tariff policy history to inform a sustainable flexible pricing regime to enhance the diffusion of energy storage and electric vehicles," Journal of Bioeconomics, Springer, vol. 19(1), pages 127-145, April.
    16. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    17. Molinari, Marco & Anund Vogel, Jonas & Rolando, Davide & Lundqvist, Per, 2023. "Using living labs to tackle innovation bottlenecks: the KTH Live-In Lab case study," Applied Energy, Elsevier, vol. 338(C).
    18. Cen, Xiao & Chen, Zengliang & Chen, Haifeng & Ding, Chen & Ding, Bo & Li, Fei & Lou, Fangwei & Zhu, Zhenyu & Zhang, Hongyu & Hong, Bingyuan, 2024. "User repurchase behavior prediction for integrated energy supply stations based on the user profiling method," Energy, Elsevier, vol. 286(C).
    19. Langer, Lissy & Volling, Thomas, 2022. "A reinforcement learning approach to home energy management for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 327(C).
    20. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3744-:d:1701975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.