IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3652-d1698842.html
   My bibliography  Save this article

A Bi-Level Demand Response Framework Based on Customer Directrix Load for Power Systems with High Renewable Integration

Author

Listed:
  • Weimin Xi

    (State Grid (Suzhou) City & Energy Research Institute, Suzhou 215000, China)

  • Qian Chen

    (State Grid (Suzhou) City & Energy Research Institute, Suzhou 215000, China)

  • Haihua Xu

    (State Grid (Suzhou) City & Energy Research Institute, Suzhou 215000, China)

  • Qingshan Xu

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

The growing integration of renewable energy sources (RESs) into modern power systems calls for enhanced flexibility and control mechanisms. Conventional demand response (DR) strategies, such as price-based and incentive-driven methods, often encounter challenges that limit their effectiveness. This paper proposes a novel DR approach grounded in Customer Directrix Load (CDL) and formulated through Stackelberg game theory. A bilevel optimization framework is established, with air conditioning (AC) systems and electric vehicles (EVs) serving as the main DR participants. The problem is addressed using a genetic algorithm. Simulation studies on a modified IEEE 33-bus distribution system reveal that the proposed strategy significantly improves RES accommodation, reduces power curtailment, and yields mutual benefits for both system operators and end users. The findings highlight the potential of the CDL-based DR mechanism in enhancing operational efficiency and encouraging proactive consumer involvement.

Suggested Citation

  • Weimin Xi & Qian Chen & Haihua Xu & Qingshan Xu, 2025. "A Bi-Level Demand Response Framework Based on Customer Directrix Load for Power Systems with High Renewable Integration," Energies, MDPI, vol. 18(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3652-:d:1698842
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3652/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3652/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan, Yi & Liu, Mingqi & Tian, Chongyi & Li, Ji & Li, Ke, 2024. "Multi-layer game theory based operation optimisation of ICES considering improved independent market participant models and dedicated distributed algorithms," Applied Energy, Elsevier, vol. 373(C).
    2. Ding, Yi & Shao, Changzheng & Yan, Jinyue & Song, Yonghua & Zhang, Chi & Guo, Chuangxin, 2018. "Economical flexibility options for integrating fluctuating wind energy in power systems: The case of China," Applied Energy, Elsevier, vol. 228(C), pages 426-436.
    3. Nikzad, Mehdi & Samimi, Abouzar, 2021. "Integration of designing price-based demand response models into a stochastic bi-level scheduling of multiple energy carrier microgrids considering energy storage systems," Applied Energy, Elsevier, vol. 282(PA).
    4. Song, Meng & Ding, Jianyong & Gao, Ciwei & Yan, Mingyu & Ban, Mingfei & Liu, Zicheng & Bai, Wenchao, 2024. "Exergy-driven optimal operation of virtual energy station based on coordinated cooperative and Stackelberg games," Applied Energy, Elsevier, vol. 360(C).
    5. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui, Hongxun & Ding, Yi & Song, Yonghua & Rahman, Saifur, 2019. "Modeling and control of flexible loads for frequency regulation services considering compensation of communication latency and detection error," Applied Energy, Elsevier, vol. 250(C), pages 161-174.
    2. Jiang, Meihui & Xu, Zhenjiang & Zhu, Hongyu & Hwang Goh, Hui & Agustiono Kurniawan, Tonni & Liu, Tianhao & Zhang, Dongdong, 2024. "Integrated demand response modeling and optimization technologies supporting energy internet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    3. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    4. Xie, Kang & Hui, Hongxun & Ding, Yi & Song, Yonghua & Ye, Chengjin & Zheng, Wandong & Ye, Shuiquan, 2022. "Modeling and control of central air conditionings for providing regulation services for power systems," Applied Energy, Elsevier, vol. 315(C).
    5. Hui, Hengyu & Bao, Minglei & Ding, Yi & Song, Yonghua, 2022. "Exploring the integrated flexible region of distributed multi-energy systems with process industry," Applied Energy, Elsevier, vol. 311(C).
    6. Yu, Jie & Chen, Lu & Wang, Qiong & Zhang, Xi & Sun, Qinghe, 2024. "Towards sustainable regional energy solutions: An optimized operational model for integrated energy systems with price-responsive planning," Energy, Elsevier, vol. 305(C).
    7. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    8. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    9. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    10. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    11. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
    12. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    13. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Wang, Jinda, 2018. "Effects of the operation regulation modes of district heating system on an integrated heat and power dispatch system for wind power integration," Applied Energy, Elsevier, vol. 230(C), pages 1126-1139.
    14. Tie, Yingqi & Hu, Bo & Shao, Changzheng & Huang, Wei & Qi, Feng & Xie, Kaigui, 2023. "Integrated flexibility characterization and measurement of distributed multi-energy systems considering temporal coupling constraints," Energy, Elsevier, vol. 283(C).
    15. Wu, Tianyu & Han, Fengwu & Zhao, Yunlong & Yu, Zishuo, 2025. "A decarbonization-oriented and uncertainty-aware energy management strategy for multi-district integrated energy systems with fair peer-to-peer trading," Energy, Elsevier, vol. 323(C).
    16. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    17. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    18. Sun, Yantao & Guo, Yujia & Zhang, Qiang & Jia, Youwei, 2025. "Berth allocation and energy scheduling for all-electric ships in seaport microgrid: A Stackelberg game approach," Energy, Elsevier, vol. 322(C).
    19. Fan, Songli & Xu, Guodong & Jiang, Baoping & Wu, Zhengtian & Xing, Haijun & Gao, Yang & Ai, Qian, 2025. "Low-carbon economic operation of commercial park-level integrated energy systems incorporating supply and demand flexibility," Energy, Elsevier, vol. 323(C).
    20. Ponce de Leon Barido, Diego & Suffian, Stephen & Kammen, Daniel M. & Callaway, Duncan, 2018. "Opportunities for behavioral energy efficiency and flexible demand in data-limited low-carbon resource constrained environments," Applied Energy, Elsevier, vol. 228(C), pages 512-523.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3652-:d:1698842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.