IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3517-d1694155.html
   My bibliography  Save this article

A Study on the Transient Flow Characteristics of Pump Turbines Across the Full Operating Range in Turbine Mode

Author

Listed:
  • Hongqiang Tang

    (School of Intelligent Equipment, Lanzhou College of Information Science and Technology, Lanzhou 730300, China)

  • Qifei Li

    (School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Xiangyu Chen

    (School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

  • Zhanyong Li

    (Tianjin Tianfa Heavy Machinery and Hydro Power Equipment Manufacture Co., Ltd., Tianjin 300400, China)

  • Shiwei Li

    (School of Intelligent Equipment, Lanzhou College of Information Science and Technology, Lanzhou 730300, China)

Abstract

The transient operation of pump turbines generates significant flow-induced instabilities, prompting a comprehensive numerical investigation using the SST k − ω turbulence model to examine these instability effects throughout the complete operating range in turbine mode. This study specifically analyzes the evolutionary mechanisms of unsteady flow dynamics under ten characteristic off-design conditions while simultaneously characterizing the pressure fluctuation behavior within the vaneless space (VS). The results demonstrate that under both low-speed conditions and near-zero-discharge conditions, the VS and its adjacent flow domains exhibit pronounced flow instabilities with highly turbulent flow structures, while the pressure fluctuation amplitudes remain relatively small due to insufficient rotational speed or flow rate. Across the entire turbine operating range, the blade passing frequency (BPF) dominates the VS pressure fluctuation spectrum. Significant variations are observed in both low-frequency components (LFCs) and high-frequency, low-amplitude components (HF-LACs) with changing operating conditions. The HF-LACs exhibit relatively stable amplitudes but demonstrate significant variation in the frequency spectrum distribution across different operating conditions, with notably broader frequency dispersion under runaway conditions and adjacent operating points. The LFCs demonstrate significantly higher spectral density and amplitude magnitudes under high-speed, low-discharge operating conditions while exhibiting markedly reduced occurrence and diminished amplitudes in the low-speed, high-flow regime. This systematic investigation provides fundamental insights into the flow physics governing pump-turbine performance under off-design conditions while offering practical implications for optimizing transient operational control methodologies in hydroelectric energy storage systems.

Suggested Citation

  • Hongqiang Tang & Qifei Li & Xiangyu Chen & Zhanyong Li & Shiwei Li, 2025. "A Study on the Transient Flow Characteristics of Pump Turbines Across the Full Operating Range in Turbine Mode," Energies, MDPI, vol. 18(13), pages 1-28, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3517-:d:1694155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    2. Fang, Mingkun & Liang, Quanwei & Xiao, Ruofu & Tao, Ran, 2025. "Mechanistic insights into fatigue behavior of pump-turbine at different guide vanes opening: A study of dynamic stress response and chaos phenomena," Energy, Elsevier, vol. 320(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makhdoomi, Sina & Askarzadeh, Alireza, 2020. "Daily performance optimization of a grid-connected hybrid system composed of photovoltaic and pumped hydro storage (PV/PHS)," Renewable Energy, Elsevier, vol. 159(C), pages 272-285.
    2. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    3. Simshauser, P. & Gilmore, J., 2025. "Policy Sequencing: On the Electrification of Gas Loads in Australia’s National Electricity Market," Cambridge Working Papers in Economics 2528, Faculty of Economics, University of Cambridge.
    4. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    5. Kheshti, Mostafa & Zhao, Xiaowei & Liang, Ting & Nie, Binjian & Ding, Yulong & Greaves, Deborah, 2022. "Liquid air energy storage for ancillary services in an integrated hybrid renewable system," Renewable Energy, Elsevier, vol. 199(C), pages 298-307.
    6. Lu Gan & Dirong Xu & Xiuyun Chen & Pengyan Jiang & Benjamin Lev & Zongmin Li, 2023. "Sustainable portfolio re-equilibrium on wind-solar-hydro system: An integrated optimization with combined meta-heuristic," Energy & Environment, , vol. 34(5), pages 1383-1408, August.
    7. Wesseh, Presley K. & Benjamin, Nelson I. & Lin, Boqiang, 2022. "The coordination of pumped hydro storage, electric vehicles, and climate policy in imperfect electricity markets: Insights from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Handong Liu & Jialiang Wang & Huaichang Yu & Yiying Zhang, 2023. "The Influence of Cyclic Load Amplitude on Mechanical Response and Acoustic Emission Characteristics of Granite," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    9. Huang, Kangdi & Luo, Peng & Liu, Pan & KIM, Jong Suk & Wang, Yintang & Xu, Weifeng & Li, He & Gong, Yu, 2022. "Improving complementarity of a hybrid renewable energy system to meet load demand by using hydropower regulation ability," Energy, Elsevier, vol. 248(C).
    10. Wang, Huan & Liao, Shengli & Cheng, Chuntian & Liu, Benxi & Fang, Zhou & Wu, Huijun, 2025. "Short-term scheduling strategies for hydro-wind-solar-storage considering variable-speed unit of pumped storage," Applied Energy, Elsevier, vol. 377(PA).
    11. Wadim Strielkowski & Irina Firsova & Inna Lukashenko & Jurgita Raudeliūnienė & Manuela Tvaronavičienė, 2021. "Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    12. Isabel Catarino & Inês Romão & Ana Estanqueiro, 2025. "Hybrid Variable Renewable Power Plants: A Case Study of ROR Hydro Arbitrage," Energies, MDPI, vol. 18(3), pages 1-12, January.
    13. Mariusz Kruczek & Malgorzata Markowska & Aikaterini Servou & Christos Roumpos & Eleni Mertiri & Priscilla Ernst & Jaroslaw Darmosz & Thomas Kempka, 2025. "Navigating Socio-Technical Challenges in Energy Efficiency: Case Studies on Hybrid Pumped-Hydropower Storage in Poland and Greece," Energies, MDPI, vol. 18(3), pages 1-32, January.
    14. Armenia Androniceanu & Oana Matilda Sabie, 2022. "Overview of Green Energy as a Real Strategic Option for Sustainable Development," Energies, MDPI, vol. 15(22), pages 1-35, November.
    15. Wang, Zizhao & Li, Yang & Wu, Feng & Wu, Jiawei & Shi, Linjun & Lin, Keman, 2024. "Multi-objective day-ahead scheduling of cascade hydropower-photovoltaic complementary system with pumping installation," Energy, Elsevier, vol. 290(C).
    16. Ramos, Helena M. & Sintong, Jeremy E. & Kuriqi, Alban, 2024. "Optimal integration of hybrid pumped storage hydropower toward energy transition," Renewable Energy, Elsevier, vol. 221(C).
    17. Li, Weiqi & Yang, Weijia & Zhang, Fan & Wu, Shuang & Li, Zheng, 2024. "Extreme weather impact on carbon-neutral power system operation schemes: A case study of 2060 Sichuan Province," Energy, Elsevier, vol. 313(C).
    18. Pali, Bahadur Singh & Vadhera, Shelly, 2021. "A novel approach for hydropower generation using photovoltaic electricity as driving energy," Applied Energy, Elsevier, vol. 302(C).
    19. He, Yi & Guo, Su & Zhou, Jianxu & Ye, Jilei & Huang, Jing & Zheng, Kun & Du, Xinru, 2022. "Multi-objective planning-operation co-optimization of renewable energy system with hybrid energy storages," Renewable Energy, Elsevier, vol. 184(C), pages 776-790.
    20. Ansorena Ruiz, R. & de Vilder, L.H. & Prasasti, E.B. & Aouad, M. & De Luca, A. & Geisseler, B. & Terheiden, K. & Scanu, S. & Miccoli, A. & Roeber, V. & Marence, M. & Moll, R. & Bricker, J.D. & Goseber, 2022. "Low-head pumped hydro storage: A review on civil structure designs, legal and environmental aspects to make its realization feasible in seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3517-:d:1694155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.