IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3112-d1677914.html
   My bibliography  Save this article

Electrostatic Dual-Layer Solvent-Free Cathodes for High-Performance Lithium-Ion Batteries

Author

Listed:
  • Haojin Guo

    (School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China)

  • Chengrui Zhang

    (School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China)

  • Yujie Ma

    (School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China)

  • Ning Liu

    (School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China)

  • Zhifeng Wang

    (School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China)

Abstract

Slurry-cast (SLC) electrode manufacturing faces problems such as thickness limitation and material stratification, which are caused by applying toxic organic solvents. Solvent-free electrode technology, as a sustainable alternative, could get rid of issues generated by solvents. In this study, dual-layer NCM811 solvent-free electrodes (DLEs) are fabricated via an electrostatic powder deposition method with an active material-rich upper layer to provide high energy output, while the more binder–conductor content base layer improves conductivity and contact with current collectors. The dual-layered structure overwhelms the single-layer electrode (SE) with stable cycling performance caused by more regulated pore structures. DLE maintains 74% capacity retention after 100 cycles at 0.3 C, while the SLC shows only 60% capacity retention. Additionally, DLE shows excellent rate performance at various rates, with 207.3 mAh g −1 , 193.9 mAh g −1 , 173.9 mAh g −1 , 157.3 mAh g −1 , and 120.4 mAh g −1 at 0.1 C, 0.2 C, 0.5 C, 1.0 C, and 2.0 C, respectively. The well-designed DLE cathodes exhibit superior discharge-specific capacities, rate performance, and improved cycling stability than traditional SLC cathodes. It enlightens the path toward new structure innovations of solvent-free electrodes.

Suggested Citation

  • Haojin Guo & Chengrui Zhang & Yujie Ma & Ning Liu & Zhifeng Wang, 2025. "Electrostatic Dual-Layer Solvent-Free Cathodes for High-Performance Lithium-Ion Batteries," Energies, MDPI, vol. 18(12), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3112-:d:1677914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    2. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    3. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Yanjie Yi & Jingshun Zhuang & Chao Liu & Lirong Lei & Shuaiming He & Yi Hou, 2022. "Emerging Lignin-Based Materials in Electrochemical Energy Systems," Energies, MDPI, vol. 15(24), pages 1-22, December.
    7. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Zhang, Zhen & Zhu, Yuhao & Gong, Yichang & Wang, Teng & Cui, Naxin & Shang, Yunlong, 2025. "Insight into the whole from the part: Redefined state of health for lithium-ion batteries based on optimal charging fragment search," Energy, Elsevier, vol. 320(C).
    10. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    13. Taeho Kim & Cheolhee Yoon & Seungho Jung, 2024. "A Study on the Battery Recycling Process and Risk Estimation," IJERPH, MDPI, vol. 21(12), pages 1-23, December.
    14. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    15. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    16. Irina Stenina & Ruslan Shaydullin & Tatiana Kulova & Anna Kuz’mina & Nataliya Tabachkova & Andrey Yaroslavtsev, 2020. "Effect of Carbon Additives on the Electrochemical Performance of Li 4 Ti 5 O 12 /C Anodes," Energies, MDPI, vol. 13(15), pages 1-15, August.
    17. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    18. Abdulrahman S. Binfaris & Alexander G. Zestos & Jandro L. Abot, 2023. "Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring," Energies, MDPI, vol. 16(15), pages 1-14, August.
    19. Wang, Zhenpo & Hong, Jichao & Liu, Peng & Zhang, Lei, 2017. "Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles," Applied Energy, Elsevier, vol. 196(C), pages 289-302.
    20. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3112-:d:1677914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.