IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3102-d1677598.html
   My bibliography  Save this article

Sustainable Crop Irrigation with Renewable Energy: A Case Study of Lethbridge County, Alberta

Author

Listed:
  • Mohammad Adnan Aftab

    (Department of Geography and Environment, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada)

  • James Byrne

    (Department of Geography and Environment, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada)

  • Paul Hazendonk

    (Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada)

  • Dan Johnson

    (Department of Geography and Environment, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada)

  • Locke Spencer

    (Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada)

Abstract

The agriculture sector is a major contributor to the economy of Alberta, Canada, accounting for almost 2.8% of the total GDP. Considering its importance, implementing efficient and cost-effective irrigation systems is vital for promoting sustainable agriculture in semi-arid regions like Lethbridge County, Alberta, Canada. Although irrigation is primarily carried out using the Oldman River and its allied reservoirs, groundwater pumping becomes a supplementary necessity during periods of limited surface water availability or droughts. This research investigates the potential of renewable energy resources, such as wind and solar energy, to meet the energy requirements for crop irrigation. The study begins by identifying and calculating the water requirements for major crops in Lethbridge County, such as wheat and barley, using the United Nations Food and Agriculture Organization’s CROPWAT 8.0 software. Subsequently, energy calculations were conducted to meet the specific crop water demand through the design of a hybrid energy system using Homer Pro 3.16.2. A technoeconomic analysis of the renewable hybrid system has been carried out to demonstrate the efficiency and novelty of the proposed work. Outcomes revealed that the proposed system is both efficient and economical in fulfilling the crop water requirement through groundwater pumping, promoting sustainable agriculture, and helping to ensure food security in the region.

Suggested Citation

  • Mohammad Adnan Aftab & James Byrne & Paul Hazendonk & Dan Johnson & Locke Spencer, 2025. "Sustainable Crop Irrigation with Renewable Energy: A Case Study of Lethbridge County, Alberta," Energies, MDPI, vol. 18(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3102-:d:1677598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uzair Jamil & Joshua M. Pearce, 2022. "Energy Policy for Agrivoltaics in Alberta Canada," Energies, MDPI, vol. 16(1), pages 1-31, December.
    2. Mohammad Alghassab & Zafar A. Khan & Abdullah Altamimi & Muhammad Imran & Fahad F. Alruwaili, 2022. "Prospects of Hybrid Energy in Saudi Arabia, Exploring Irrigation Application in Shaqra," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    3. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    4. Zafar A. Khan & Muhammad Imran & Jamal Umer & Saeed Ahmed & Ogheneruona E. Diemuodeke & Amged Osman Abdelatif, 2021. "Assessing Crop Water Requirements and a Case for Renewable-Energy-Powered Pumping System for Wheat, Cotton, and Sorghum Crops in Sudan," Energies, MDPI, vol. 14(23), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingchao, Zhang & Kotani, Koji & Saijo, Tatsuyoshi, 2018. "Public acceptance of environmentally friendly heating in Beijing: A case of a low temperature air source heat pump," Energy Policy, Elsevier, vol. 117(C), pages 75-85.
    2. Damette, Olivier & Delacote, Philippe & Lo, Gaye Del, 2018. "Households energy consumption and transition toward cleaner energy sources," Energy Policy, Elsevier, vol. 113(C), pages 751-764.
    3. Meles, Tensay Hadush & Ryan, Lisa & Mukherjee, Sanghamitra C., 2022. "Heterogeneity in preferences for renewable home heating systems among Irish households," Applied Energy, Elsevier, vol. 307(C).
    4. Adamczyk, Janusz & Dylewski, Robert, 2017. "The impact of thermal insulation investments on sustainability in the construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 421-429.
    5. Ruokamo, Enni, 2016. "Household preferences of hybrid home heating systems – A choice experiment application," Energy Policy, Elsevier, vol. 95(C), pages 224-237.
    6. Strazzera, Elisabetta & Statzu, Vania, 2017. "Fostering photovoltaic technologies in Mediterranean cities: Consumers’ demand and social acceptance," Renewable Energy, Elsevier, vol. 102(PB), pages 361-371.
    7. Pavlović, Boban & Ivezić, Dejan & Živković, Marija, 2022. "Transition pathways of household heating in Serbia: Analysis based on an agent-based model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. Girod, Bastien & Mayer, Sebastian & Nägele, Florian, 2017. "Economic versus belief-based models: Shedding light on the adoption of novel green technologies," Energy Policy, Elsevier, vol. 101(C), pages 415-426.
    9. Diana A. Londoño-Pulgarín & Francisco Muñoz-Leiva & Esmeralda Crespo-Almendros, 2020. "Conversion of Residential Heating Systems from Fossil Fuels to Biofuels: A Cross-Cultural Analysis," Energies, MDPI, vol. 13(19), pages 1-24, September.
    10. Wang, Kui & Zhang, Yuanyuan & Sekelj, Gasper & Hopke, Philip K., 2019. "Economic analysis of a field monitored residential wood pellet boiler heating system in New York State," Renewable Energy, Elsevier, vol. 133(C), pages 500-511.
    11. von Wirth, Timo & Gislason, Linda & Seidl, Roman, 2018. "Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2618-2628.
    12. Israr Ahmed & Jamal Umer & Abdullah Altamimi & Ahmad Raza Khan Rana & Zafar A. Khan & Muhammad Imran & Muhammad Awais & Saeed Alyami, 2023. "A Critical Analysis of the Energy Requirements of a Commercial Building Based on Various Types of Glass Insulations," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    13. Zhao, Jing & Duan, Yaoqi & Liu, Xiaojuan, 2019. "Study on the policy of replacing coal-fired boilers with gas-fired boilers for central heating based on the 3E system and the TOPSIS method: A case in Tianjin, China," Energy, Elsevier, vol. 189(C).
    14. Evangelia Karasmanaki & Spyridon Galatsidas & Georgios Tsantopoulos, 2019. "An Investigation of Factors Affecting the Willingness to Invest in Renewables among Environmental Students: A Logistic Regression Approach," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    15. Zbigniew Juroszek & Weronika Juroszek, 2018. "Attitudes of heat plant managers as one of the key obstacles to district heating decarbonization in Poland," Energy & Environment, , vol. 29(7), pages 1116-1129, November.
    16. McCoy, Daire & Curtice, John, 2018. "Exploring the spatial and temporal determinants of gas central heating adoption," LSE Research Online Documents on Economics 86625, London School of Economics and Political Science, LSE Library.
    17. Vering, Christian & Göbel, Stephan & Klebig, Tim & Will, Florian & Horst, Janik & Wüllhorst, Fabian & Nürenberg, Markus & Mehrfeld, Philipp & Müller, Dirk, 2024. "Towards a defossilized building sector with field tests in the lab: Review, development, and evaluation," Applied Energy, Elsevier, vol. 365(C).
    18. Jacksohn, Anke & Grösche, Peter & Rehdanz, Katrin & Schröder, Carsten, 2019. "Drivers of renewable technology adoption in the household sector," Energy Economics, Elsevier, vol. 81(C), pages 216-226.
    19. Curtis, John & Tovar, Miguel Angel & Grilli, Gianluca, 2020. "Access to and consumption of natural gas: Spatial and socio-demographic drivers," Energy Policy, Elsevier, vol. 143(C).
    20. Li, Pei-Hao & Keppo, Ilkka & Strachan, Neil, 2018. "Incorporating homeowners' preferences of heating technologies in the UK TIMES model," Energy, Elsevier, vol. 148(C), pages 716-727.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3102-:d:1677598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.