IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3062-d1675618.html
   My bibliography  Save this article

Comparative Energy and Environmental Analysis of Combined Cycle CHP Combustion Operations via Simulation for Biomass and Industrial Materials Derived from Waste

Author

Listed:
  • Dasith Wijesekara

    (Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka)

  • Lasitha Kularathna

    (Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka)

  • Pawani Abesundara

    (Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka)

  • Udayangani Lankathilaka

    (Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka)

  • Imesha Muhandiram

    (Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka)

  • Prasad Amarasinghe

    (Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka)

  • Shakya Abesinghe

    (Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka)

  • Chanaka Galpaya

    (Center for Nano Device Fabrication and Characterization (CNFC), Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka)

  • Kaveenga Koswattage

    (Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
    Center for Nano Device Fabrication and Characterization (CNFC), Faculty of Technology, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka)

Abstract

The Combined Cycle Combined Heat and Power (CCCHP) systems are an effective way to improve energy efficiency and reduce emissions. This paper examines the energy and environmental impact of CCCHP combustion using waste biomass like the biomass of spent wash (SW), waste crankcase oil (WCO), and bagasse (BA) using an advanced Ebsilon Professional 16 software simulation model. The simulations were designed to achieve 150 MW total power output and 25 MW heating energy. Simulation results indicate that the minimum fuel feed requirement of a 10.762 kg/s flow rate was recorded at the highest calorific value (CV) fuel briquette of 1:8 ratio BA–WCO. The BA–WCO system demonstrates a significantly higher heat recovery capacity in the heat recovery steam generator (HRSG) compared to the BA–SW system. At a 1:8 ratio, it recovers 1463 kJ/kg versus 583 kJ/kg, and 1391 kJ/kg versus 498 kJ/kg at a 1:3 ratio. The CCCHP efficiency was much higher for BA–WCO than those developed from spent wash–bagasse, yielding up to 41.1% compared to a maximum of 26.71%. Furthermore, the BA–WCO system showed a better result than the BA–SW CCCHP system by emitting a low amount of flue gas with low temperature.

Suggested Citation

  • Dasith Wijesekara & Lasitha Kularathna & Pawani Abesundara & Udayangani Lankathilaka & Imesha Muhandiram & Prasad Amarasinghe & Shakya Abesinghe & Chanaka Galpaya & Kaveenga Koswattage, 2025. "Comparative Energy and Environmental Analysis of Combined Cycle CHP Combustion Operations via Simulation for Biomass and Industrial Materials Derived from Waste," Energies, MDPI, vol. 18(12), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3062-:d:1675618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3062/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3062/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
    2. Dasith Wijesekara & Prasad Amarasinghe & Ashan Induranga & Vimukthi Vithanage & Kaveenga Rasika Koswattage, 2025. "Energy, Exergy, and Environmental Impact Analysis and Optimization of Coal–Biomass Combustion Combined Cycle CHP Systems," Sustainability, MDPI, vol. 17(6), pages 1-21, March.
    3. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    4. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Carlos T. Hiranobe & Andressa S. Gomes & Fábio F. G. Paiva & Gabrieli R. Tolosa & Leonardo L. Paim & Guilherme Dognani & Guilherme P. Cardim & Henrique P. Cardim & Renivaldo J. dos Santos & Flávio C. , 2024. "Sugarcane Bagasse: Challenges and Opportunities for Waste Recycling," Clean Technol., MDPI, vol. 6(2), pages 1-38, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harutyunyan, Artur & Badyda, Krzysztof & Wołowicz, Marcin, 2025. "Analyzing of different repowering methods on the example of 300 MW existing steam cycle power plant using gatecycle™ software," Energy, Elsevier, vol. 314(C).
    2. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    3. Shifei Zhao & Chunlan Wang & Fan Duan & Ze Tian, 2024. "Thermodynamic Comparison of the Steam Ejectors Integrated at Different Locations in Cogeneration Systems," Energies, MDPI, vol. 17(11), pages 1-18, May.
    4. Ji, Huichao & Wang, Haixin & Yang, Junyou & Feng, Jiawei & Yang, Yongyue & Okoye, Martin Onyeka, 2021. "Optimal schedule of solid electric thermal storage considering consumer behavior characteristics in combined electricity and heat networks," Energy, Elsevier, vol. 234(C).
    5. Liu, Hong & Zhao, Yue & Gu, Chenghong & Ge, Shaoyun & Yang, Zan, 2021. "Adjustable capability of the distributed energy system: Definition, framework, and evaluation model," Energy, Elsevier, vol. 222(C).
    6. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    7. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Tammo Zobel & Andreas Ritter & Christopher H. Onder, 2023. "The Faster the Better? Optimal Warm-Up Strategies for a Micro Combined Heat and Power Plant," Energies, MDPI, vol. 16(10), pages 1-24, May.
    10. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    11. Hamdi Abdi, 2023. "A Survey of Combined Heat and Power-Based Unit Commitment Problem: Optimization Algorithms, Case Studies, Challenges, and Future Directions," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    12. Zheng, Lingwei & Wu, Hao & Guo, Siqi & Sun, Xinyu, 2023. "Real-time dispatch of an integrated energy system based on multi-stage reinforcement learning with an improved action-choosing strategy," Energy, Elsevier, vol. 277(C).
    13. Elnaz Davoodi & Salar Balaei-Sani & Behnam Mohammadi-Ivatloo & Mehdi Abapour, 2021. "Flexible Continuous-Time Modeling for Multi-Objective Day-Ahead Scheduling of CHP Units," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    14. Frauke Oest & Malin Radtke & Marita Blank-Babazadeh & Stefanie Holly & Sebastian Lehnhoff, 2021. "Evaluation of Communication Infrastructures for Distributed Optimization of Virtual Power Plant Schedules," Energies, MDPI, vol. 14(5), pages 1-20, February.
    15. Zhao, Pan & Gou, Feifei & Xu, Wenpan & Shi, Honghui & Wang, Jiangfeng, 2023. "Energy, exergy, economic and environmental (4E) analyses of an integrated system based on CH-CAES and electrical boiler for wind power penetration and CHP unit heat-power decoupling in wind enrichment," Energy, Elsevier, vol. 263(PC).
    16. Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).
    17. Dasith Wijesekara & Prasad Amarasinghe & Ashan Induranga & Vimukthi Vithanage & Kaveenga Rasika Koswattage, 2025. "Energy, Exergy, and Environmental Impact Analysis and Optimization of Coal–Biomass Combustion Combined Cycle CHP Systems," Sustainability, MDPI, vol. 17(6), pages 1-21, March.
    18. Klimenko, V.V. & Krasheninnikov, S.M. & Fedotova, E.V., 2022. "CHP performance under the warming climate: a case study for Russia," Energy, Elsevier, vol. 244(PB).
    19. Fuchs, Nicolas & Yanez, Guillermo & Nkongdem, Bertrand & Thomsen, Jessica, 2025. "Evaluating low-temperature heat sources for large-scale heat pump integration: A method using open-source data and indicators," Applied Energy, Elsevier, vol. 377(PB).
    20. Brown, Marilyn A. & Herrera, Valentina Sanmiguel, 2021. "Combined heat and power as a platform for clean energy systems," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3062-:d:1675618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.