IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224007308.html
   My bibliography  Save this article

Zero carbon emission CCGT power plant with integrated solid fuel gasification

Author

Listed:
  • Sterkhov, K.V.
  • Khokhlov, D.A.
  • Zaichenko, M.N.

Abstract

The development of a high-capacity power plant with zero CO2 emissions is an urgent task that will curb the increase in atmospheric temperature. It should have an efficiency comparable with existing TPPs, a low metal consumption rate, a high fuel versatility, and high flexibility. To meet these conditions, oxygen combustion is conducted in an environment of inert CO2, and most of the condensation heat from the combustion products is usefully utilized. This work presents a combined cycle gas turbine (CCGT) power plant with solid fuel gasification, oxy-fuel combustion, and a pressurized heat recovery steam generator (PHRSG). The two plant options are compared with the natural gas plant previously proposed. In the PHRSG, the low metal intensity is achieved by high average temperature differences, the pinch point value at 8–12 °C, and the intensification of heat transfer caused by the high pressure of combustion products and the condensation of water vapor in the tail surfaces. The developed plants are highly efficient when using coal, 51%, and 57.3% when using peat, and have acceptable CO2 avoidance costs of 72.7 €/t and 60.4 €/t. By combining these factors, and using well-developed materials, it will take less time to develop and implement this plant widely.

Suggested Citation

  • Sterkhov, K.V. & Khokhlov, D.A. & Zaichenko, M.N., 2024. "Zero carbon emission CCGT power plant with integrated solid fuel gasification," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007308
    DOI: 10.1016/j.energy.2024.130958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007308
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fazil, A. & Kumar, Sandeep & Mahajani, Sanjay M., 2023. "Gasification and Co-gasification of paper-rich, high-ash refuse-derived fuel in downdraft gasifier," Energy, Elsevier, vol. 263(PA).
    2. Romero-Anton, N. & Martin-Escudero, K. & Portillo-Valdés, L.A. & Gómez-Elvira, I. & Salazar-Herran, E., 2018. "Improvement of auxiliary BI-DRUM boiler operation by dynamic simulation," Energy, Elsevier, vol. 148(C), pages 676-686.
    3. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    4. Lindqvist, Karl & Jordal, Kristin & Haugen, Geir & Hoff, Karl Anders & Anantharaman, Rahul, 2014. "Integration aspects of reactive absorption for post-combustion CO2 capture from NGCC (natural gas combined cycle) power plants," Energy, Elsevier, vol. 78(C), pages 758-767.
    5. Dong, Ruihan & Yang, Shiliang & Hu, Jianhang & Chen, Fangjun & Bao, Guirong & Wang, Hua, 2022. "CFD investigation of the in-situ gasification process of biomass in the chemical looping combustion system," Renewable Energy, Elsevier, vol. 185(C), pages 1245-1260.
    6. Ilea, Flavia-Maria & Cormos, Ana-Maria & Cristea, Vasile-Mircea & Cormos, Calin-Cristian, 2023. "Enhancing the post-combustion carbon dioxide carbon capture plant performance by setpoints optimization of the decentralized multi-loop and cascade control system," Energy, Elsevier, vol. 275(C).
    7. Vikram, Shruti & Rosha, Pali & Kumar, Sandeep & Mahajani, Sanjay, 2022. "Thermodynamic analysis and parametric optimization of steam-CO2 based biomass gasification system using Aspen PLUS," Energy, Elsevier, vol. 241(C).
    8. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    9. Lee, Jae Chul & Lee, Hyeon Hui & Joo, Yong Jin & Lee, Chang Ha & Oh, Min, 2014. "Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle) plant with an entrained coal gasifier," Energy, Elsevier, vol. 64(C), pages 58-68.
    10. Sanaye, Sepehr & Alizadeh, Pouria & Yazdani, Mohsen, 2022. "Thermo-economic analysis of syngas production from wet digested sewage sludge by gasification process," Renewable Energy, Elsevier, vol. 190(C), pages 524-539.
    11. Qiu, Yang & Cohen, Stuart & Suh, Sangwon, 2022. "Decarbonization scenarios of the U.S. Electricity system and their costs," Applied Energy, Elsevier, vol. 325(C).
    12. Gu, Yuheng & Ding, Yudong & Liao, Qiang & Fu, Qian & Zhu, Xun & Wang, Hong, 2020. "Condensation heat transfer characteristics of moist air outside 3-D finned tubes with different wettability," Energy, Elsevier, vol. 207(C).
    13. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    14. Skjervold, Vidar T. & Mondino, Giorgia & Riboldi, Luca & Nord, Lars O., 2023. "Investigation of control strategies for adsorption-based CO2 capture from a thermal power plant under variable load operation," Energy, Elsevier, vol. 268(C).
    15. Miliauskas, Gintautas & Puida, Egidijus & Poškas, Robertas & Ragaišis, Valdas & Paukštaitis, Linas & Jouhara, Hussam & Mingilaitė, Laura, 2022. "Experimental investigations of water droplet transient phase changes in flue gas flow in the range of temperatures characteristic of condensing economizer technologies," Energy, Elsevier, vol. 256(C).
    16. Miliauskas, Gintautas & Puida, Egidijus & Poškas, Robertas & Poškas, Povilas & Balčius, Algimantas & Jouhara, Hussam, 2022. "The modeling of transient phase changes of water droplets in flue gas flow in the range of temperatures characteristic of condensing economizer technologies," Energy, Elsevier, vol. 257(C).
    17. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    18. Taler, Jan & Dzierwa, Piotr & Taler, Dawid & Harchut, Piotr, 2015. "Optimization of the boiler start-up taking into account thermal stresses," Energy, Elsevier, vol. 92(P1), pages 160-170.
    19. Li, Canbing & Chen, Dawei & Li, Yingjie & Li, Furong & Li, Ran & Wu, Qiuwei & Liu, Xubin & Wei, Juan & He, Shengtao & Zhou, Bin & Allen, Stephen, 2022. "Exploring the interaction between renewables and energy storage for zero-carbon electricity systems," Energy, Elsevier, vol. 261(PA).
    20. Kawai, Eiji & Ozawa, Akito & Leibowicz, Benjamin D., 2022. "Role of carbon capture and utilization (CCU) for decarbonization of industrial sector: A case study of Japan," Applied Energy, Elsevier, vol. 328(C).
    21. Sterkhov, K.V. & Khokhlov, D.A. & Zaichenko, M.N. & Pleshanov, K.A., 2021. "A zero carbon emission CCGT power plant and an existing steam power station modernization scheme," Energy, Elsevier, vol. 237(C).
    22. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: Model setup, validation, and preliminary predictions," Energy, Elsevier, vol. 272(C).
    23. Zima, Wiesław & Grądziel, Sławomir & Cebula, Artur & Rerak, Monika & Kozak-Jagieła, Ewa & Pilarczyk, Marcin, 2023. "Mathematical model of a power boiler operation under rapid thermal load changes," Energy, Elsevier, vol. 263(PC).
    24. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: ASU optimization and thermodynamic analysis," Energy, Elsevier, vol. 282(C).
    25. Cormos, Calin-Cristian, 2012. "Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)," Energy, Elsevier, vol. 42(1), pages 434-445.
    26. Diba, Mst Farhana & Karim, Md Rezwanul & Naser, Jamal, 2022. "CFD modelling of coal gasification in a fluidized bed with the effects of calcination under different operating conditions," Energy, Elsevier, vol. 239(PC).
    27. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    28. Otitoju, Olajide & Oko, Eni & Wang, Meihong, 2023. "Modelling, scale-up and techno-economic assessment of rotating packed bed absorber for CO2 capture from a 250 MWe combined cycle gas turbine power plant," Applied Energy, Elsevier, vol. 335(C).
    29. Ishii, Hiromi & Hayashi, Tomoya & Tada, Hiroaki & Yokohama, Katsuhiko & Takashima, Ryuhei & Hayashi, Jun-ichiro, 2019. "Critical assessment of oxy-fuel integrated coal gasification combined cycles," Applied Energy, Elsevier, vol. 233, pages 156-169.
    30. Adams, T. & Mac Dowell, N., 2016. "Off-design point modelling of a 420MW CCGT power plant integrated with an amine-based post-combustion CO2 capture and compression process," Applied Energy, Elsevier, vol. 178(C), pages 681-702.
    31. Chen, Jianan & Li, Anna & Huang, Zhu & Jiang, Wenming & Xi, Guang, 2023. "Non-equilibrium condensation in flue gas and migration trajectory of CO2 droplets in a supersonic separator," Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Woo-Sung & Oh, Hyun-Taek & Lee, Jae-Cheol & Oh, Min & Lee, Chang-Ha, 2019. "Performance analysis and carbon reduction assessment of an integrated syngas purification process for the co-production of hydrogen and power in an integrated gasification combined cycle plant," Energy, Elsevier, vol. 171(C), pages 910-927.
    2. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    3. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    4. Zima, Wiesław & Grądziel, Sławomir & Cebula, Artur & Rerak, Monika & Kozak-Jagieła, Ewa & Pilarczyk, Marcin, 2023. "Mathematical model of a power boiler operation under rapid thermal load changes," Energy, Elsevier, vol. 263(PC).
    5. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    6. Lee, Woo-Sung & Lee, Jae-Cheol & Oh, Hyun-Taek & Baek, Seung-Won & Oh, Min & Lee, Chang-Ha, 2017. "Performance, economic and exergy analyses of carbon capture processes for a 300 MW class integrated gasification combined cycle power plant," Energy, Elsevier, vol. 134(C), pages 731-742.
    7. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: ASU optimization and thermodynamic analysis," Energy, Elsevier, vol. 282(C).
    8. Liu, Zefeng & Wang, Chaoyang & Fan, Jianlin & Liu, Ming & Xing, Yong & Yan, Junjie, 2024. "Enhancing the flexibility and stability of coal-fired power plants by optimizing control schemes of throttling high-pressure extraction steam," Energy, Elsevier, vol. 288(C).
    9. Shi, Tao & Zhou, Jianzhao & Ren, Jingzheng & Ayub, Yousaf & Yu, Haoshui & Shen, Weifeng & Li, Qiao & Yang, Ao, 2023. "Co-valorisation of sewage sludge and poultry litter waste for hydrogen production: Gasification process design, sustainability-oriented optimization, and systematic assessment," Energy, Elsevier, vol. 272(C).
    10. Hou, Guolian & Huang, Ting & Jiang, Hao & Cao, Huan & Zhang, Tianhao & Zhang, Jianhua & Gao, He & Liu, Yong & Zhou, Zhenhua & An, Zhenyi, 2024. "A flexible and deep peak shaving scheme for combined heat and power plant under full operating conditions," Energy, Elsevier, vol. 299(C).
    11. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).
    12. Taler, Jan & Trojan, Marcin & Dzierwa, Piotr & Kaczmarski, Karol & Węglowski, Bohdan & Taler, Dawid & Zima, Wiesław & Grądziel, Sławomir & Ocłoń, Paweł & Sobota, Tomasz & Rerak, Monika & Jaremkiewicz,, 2023. "The flexible boiler operation in a wide range of load changes with considering the strength and environmental restrictions," Energy, Elsevier, vol. 263(PB).
    13. Oh, Hyun-Taek & Lee, Woo-Sung & Ju, Youngsan & Lee, Chang-Ha, 2019. "Performance evaluation and carbon assessment of IGCC power plant with coal quality," Energy, Elsevier, vol. 188(C).
    14. Taler, Dawid & Dzierwa, Piotr & Kaczmarski, Karol & Taler, Jan, 2022. "Increase the flexibility of steam boilers by optimisation of critical pressure component heating," Energy, Elsevier, vol. 250(C).
    15. Mei, Weiguang & Zhai, Rongrong & Zhao, Yingxin & Yao, Zhiqiang & Ma, Ning, 2024. "Exergoeconomic analysis and multi-objective optimization using NSGA-II in a novel dual-stage Selexol process of integrated gasification combined cycle," Energy, Elsevier, vol. 286(C).
    16. Chen, Jianjun & Yang, Siyu & Qian, Yu, 2019. "A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production," Energy, Elsevier, vol. 177(C), pages 304-318.
    17. Wang, Hongshuai & Ouyang, Ziqu & Ding, Hongliang & Su, Kun & Zhang, Jinyang & Hu, Yujie, 2024. "Experimental study on the flexible peak shaving with pulverized coal self-preheating technology under load variability," Energy, Elsevier, vol. 289(C).
    18. Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
    19. Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
    20. Cormos, Calin-Cristian, 2014. "Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle," Energy, Elsevier, vol. 78(C), pages 665-673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.