IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3039-d1674467.html
   My bibliography  Save this article

Research on the Characteristics of Electrolytes in Integrated Carbon Capture and Utilization Systems: The Key to Promoting the Development of Green and Low-Carbon Technologies

Author

Listed:
  • Guoqing You

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yunzhi Li

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Lihan Dong

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yichun Li

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yu Zhang

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

Abstract

The core challenge of integrated carbon capture and utilization (ICCU) technology lies in developing electrolytes that combine efficient carbon dioxide (CO 2 ) capture with electrocatalytic conversion capabilities. This review analyzes the structure–performance relationship between electrolyte properties and CO 2 electrochemical reduction (eCO 2 RR), revealing the key regulatory mechanisms. Research shows that the performance of bicarbonate electrolytes heavily depends on the cation type, where Cs + can achieve over 90% CO selectivity by suppressing the hydrogen evolution reaction (HER) and stabilizing reaction intermediates, though its strong corrosiveness limits practical applications. Although amine absorbents excel in carbon capture (efficiency > 90%), they tend to undergo competitive adsorption during electrocatalysis, making formic acid the primary product (FE = 15%); modifying electrodes with ionomers can enhance their activity by 1.15 times. Ionic liquids (ILs) demonstrate unique advantages due to their tunability: imidazolium-based ILs improve formate selectivity to 85% via carboxylate intermediate formation, while amino-functionalized task-specific ILs (TSILs) achieve a 1:1 stoichiometric CO 2 absorption ratio. Recent breakthroughs reveal that ternary IL hybrid electrolytes can achieve nearly 100% CO Faradaic efficiency (FE) through microenvironment modulation, while L-histidine additives boost CH 4 selectivity by 23% via interface modification. Notably, constructing a “bulk acidic–interfacial neutral” pH gradient system addresses carbonate deposition issues in traditional alkaline conditions, increasing C 2+ product efficiency to 50%. Studies also highlight that cation–anion synergy (e.g., K + /I − ) significantly enhances C-C coupling through electrostatic interactions, achieving 97% C 2+ selectivity on Ag electrodes. These findings provide new insights for ICCU electrolyte design, with future research focusing on machine learning-assisted material optimization and reactor engineering to advance industrial applications.

Suggested Citation

  • Guoqing You & Yunzhi Li & Lihan Dong & Yichun Li & Yu Zhang, 2025. "Research on the Characteristics of Electrolytes in Integrated Carbon Capture and Utilization Systems: The Key to Promoting the Development of Green and Low-Carbon Technologies," Energies, MDPI, vol. 18(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3039-:d:1674467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3039/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3039/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wack, Yannick & Sollich, Martin & Salenbien, Robbe & Diriken, Jan & Baelmans, Martine & Blommaert, Maarten, 2024. "A multi-period topology and design optimization approach for district heating networks," Applied Energy, Elsevier, vol. 367(C).
    2. Vos, Josephine & Ramírez, Andrea & Pérez-Fortes, Mar, 2025. "Learning from the past: Limitations of techno-economic assessments for low-temperature CO2 electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    3. Lynnette A. Blanchard & Dan Hancu & Eric J. Beckman & Joan F. Brennecke, 1999. "Green processing using ionic liquids and CO2," Nature, Nature, vol. 399(6731), pages 28-29, May.
    4. Fan, Huifeng & Mao, Yuanhao & Sultan, Sayd & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2024. "Performance enhancement of desorption reactor in the electrochemically mediated amine regeneration CO2 capture process: Thru modelling, simulation, and optimization," Applied Energy, Elsevier, vol. 376(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Kexin & Wei, Ranran & Ruan, Jiuxu & Cui, Peizhe & Zhu, Zhaoyou & Wang, Yinglong & Zhao, Xinling, 2023. "Life cycle assessment and life cycle cost analysis of surgical mask from production to recycling into hydrogen process," Energy, Elsevier, vol. 283(C).
    2. Ma, Chunyan & Xie, Yujiao & Ji, Xiaoyan & Liu, Chang & Lu, Xiaohua, 2018. "Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea," Applied Energy, Elsevier, vol. 229(C), pages 1269-1283.
    3. Mooyoung Yoo, 2024. "Development of Energy Efficient Domestic Hot Water Loop System Integrated with a Chilled Water Plant in Commercial Building," Sustainability, MDPI, vol. 17(1), pages 1-16, December.
    4. Fu, Dong & Zhang, Pan & Wang, LeMeng, 2016. "Absorption performance of CO2 in high concentrated [Bmim][Lys]-MDEA aqueous solution," Energy, Elsevier, vol. 113(C), pages 1-8.
    5. Natalia Nuño-Villanueva & Ignacio Martín Nieto & Cristina Sáez Blázquez & Enrique González-González & Miguel Ángel Maté-González & Víctor Pérez Fernández & Arturo Farfán Martín & Diego González-Aguile, 2024. "Comparative Thermal Performance Analysis of Coaxial Versus Conventional Pipes in District Heating Distribution Systems," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
    6. de Jesus, Sérgio S. & Maciel Filho, Rubens, 2022. "Are ionic liquids eco-friendly?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Xie, Yujiao & Björkmalm, Johanna & Ma, Chunyan & Willquist, Karin & Yngvesson, Johan & Wallberg, Ola & Ji, Xiaoyan, 2018. "Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plants," Applied Energy, Elsevier, vol. 227(C), pages 742-750.
    8. Chen, Yifeng & Song, Shuailong & Li, Ning & Wu, Jian & Lu, Xiaohua & Ji, Xiaoyan, 2022. "Developing hybrid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/water absorbent for CO2 separation," Applied Energy, Elsevier, vol. 326(C).
    9. Shamair, Zufishan & Habib, Nitasha & Gilani, Mazhar Amjad & Khan, Asim Laeeq, 2020. "Theoretical and experimental investigation of CO2 separation from CH4 and N2 through supported ionic liquid membranes," Applied Energy, Elsevier, vol. 268(C).
    10. Fu, Dong & Zhang, Pan, 2015. "Investigation of the absorption performance and viscosity for CO2 capture process using [Bmim][Gly] promoted MDEA (N-methyldiethanolamine) aqueous solution," Energy, Elsevier, vol. 87(C), pages 165-172.
    11. Lu, Jian-Gang & Lu, Chun-Ting & Chen, Yue & Gao, Liu & Zhao, Xin & Zhang, Hui & Xu, Zheng-Wen, 2014. "CO2 capture by membrane absorption coupling process: Application of ionic liquids," Applied Energy, Elsevier, vol. 115(C), pages 573-581.
    12. Chen, Yifeng & Sun, Yunhao & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent," Applied Energy, Elsevier, vol. 257(C).
    13. Ma, Chunyan & Liu, Chang & Lu, Xiaohua & Ji, Xiaoyan, 2018. "Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading," Applied Energy, Elsevier, vol. 225(C), pages 437-447.
    14. Xie, Yujiao & Zhang, Yingying & Lu, Xiaohua & Ji, Xiaoyan, 2014. "Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids," Applied Energy, Elsevier, vol. 136(C), pages 325-335.
    15. Sollich, Martin & Wack, Yannick & Salenbien, Robbe & Blommaert, Maarten, 2025. "Decarbonization of existing heating networks through optimal producer retrofit and low-temperature operation," Applied Energy, Elsevier, vol. 378(PA).
    16. Tooba Qureshi & Majeda Khraisheh & Fares Almomani, 2023. "Cost and Heat Integration Analysis for CO 2 Removal Using Imidazolium-Based Ionic Liquid-ASPEN PLUS Modelling Study," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    17. Wang, Xianfeng & Akhmedov, Novruz G. & Hopkinson, David & Hoffman, James & Duan, Yuhua & Egbebi, Adefemi & Resnik, Kevin & Li, Bingyun, 2016. "Phase change amino acid salt separates into CO2-rich and CO2-lean phases upon interacting with CO2," Applied Energy, Elsevier, vol. 161(C), pages 41-47.
    18. Fu, Dong & Zhang, Pan & Mi, ChenLu, 2016. "Effects of concentration and viscosity on the absorption of CO2 in [N1111][Gly] promoted MDEA (methyldiethanolamine) aqueous solution," Energy, Elsevier, vol. 101(C), pages 288-295.
    19. Yu, Xinhai & Yang, Jie & Lu, Haitao & Tu, Shan-Tung & Yan, Jinyue, 2015. "Energy-efficient extraction of fuel from Chlorella vulgaris by ionic liquid combined with CO2 capture," Applied Energy, Elsevier, vol. 160(C), pages 648-655.
    20. Sollich, Martin & Van Belle, Vincent & Wack, Yannick & Salenbien, Robbe & Baelmans, Martine & Blommaert, Maarten, 2025. "Unlocking temperature reduction of cogeneration district heating networks through automated substation retrofit," Energy, Elsevier, vol. 322(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3039-:d:1674467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.