IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2974-d1672067.html
   My bibliography  Save this article

Multi-Objective Time-Domain Coupled Feasible Region Construction Method for Virtual Power Plant Considering Global Stability

Author

Listed:
  • Li Guo

    (State Grid Jiangsu Economic Research Institute, Nanjing 210008, China)

  • Guiyuan Xue

    (State Grid Jiangsu Economic Research Institute, Nanjing 210008, China)

  • Zheng Xu

    (State Grid Jiangsu Economic Research Institute, Nanjing 210008, China)

  • Huixiang Li

    (College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China)

  • Jiacheng Li

    (College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China)

  • Xun Dou

    (College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China)

Abstract

Constructing a new power system with renewable energy as the main component requires an in-depth exploration of the regulation potential of massive, distributed flexibility resources within distribution networks. This approach aims to enhance the grid’s balancing capabilities. Virtual Power Plants can effectively aggregate flexibility resources, but the massive scale and heterogeneous nature of distributed resources pose challenges in assessing the regulation capabilities of the aggregated entity. In this paper, a feasible region solution model for Virtual Power Plants is established based on the vertex search method. Furthermore, by introducing the principles of Lyapunov stability analysis, a multi-objective time–domain coupled feasible region construction method for VPPs with global stability considerations is proposed. Through case study analysis, the boundaries of the VPP’s regulation capability and the time–neighborhood feasible regions characterized by the proposed method exhibit better full-time output stability and are more aligned with practical needs.

Suggested Citation

  • Li Guo & Guiyuan Xue & Zheng Xu & Huixiang Li & Jiacheng Li & Xun Dou, 2025. "Multi-Objective Time-Domain Coupled Feasible Region Construction Method for Virtual Power Plant Considering Global Stability," Energies, MDPI, vol. 18(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2974-:d:1672067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Qiang & Wei, Fanchao & Zhou, Yongcheng & Li, Jiajia & Zhou, Guowen & Wang, Zhonghao & Liu, Jinfu & Yan, Peigang & Yu, Daren, 2023. "A scheduling framework for VPP considering multiple uncertainties and flexible resources," Energy, Elsevier, vol. 282(C).
    2. Chen, Lin & Tang, Zhiyuan & He, Shuaijia & Liu, Junyong, 2024. "Feasible operation region estimation of virtual power plant considering heterogeneity and uncertainty of distributed energy resources," Applied Energy, Elsevier, vol. 362(C).
    3. Cui, Xueyuan & Liu, Shu & Ruan, Guangchun & Wang, Yi, 2024. "Data-driven aggregation of thermal dynamics within building virtual power plants," Applied Energy, Elsevier, vol. 353(PB).
    4. Chen, Siqi & Zhang, Kuan & Liu, Nian & Xie, Yawen, 2024. "Unlock the aggregated flexibility of electricity-hydrogen integrated virtual power plant for peak-regulation," Applied Energy, Elsevier, vol. 360(C).
    5. Siwei Zheng & Guoping Huang & Zhaoxu Luo, 2025. "Coordinated Control Strategies for Polymorphic Energy in Hydrogen-Integrated Virtual Power Plants Under the Goal of a Low-Carbon Economy," Energies, MDPI, vol. 18(6), pages 1-19, March.
    6. Khalil Gholami & Mohammad Taufiqul Arif & Md Enamul Haque, 2025. "Dynamic Boundary Dissemination to Virtual Power Plants for Congestion and Voltage Management in Power Distribution Networks," Energies, MDPI, vol. 18(3), pages 1-27, January.
    7. Meng, Weiqi & Song, Dongran & Huang, Liansheng & Chen, Xiaojiao & Yang, Jian & Dong, Mi & Talaat, M. & Elkholy, M.H., 2024. "Distributed energy management of electric vehicle charging stations based on hierarchical pricing mechanism and aggregate feasible regions," Energy, Elsevier, vol. 291(C).
    8. Kong, Xiangyu & Lu, Wenqi & Wu, Jianzhong & Wang, Chengshan & Zhao, Xv & Hu, Wei & Shen, Yu, 2023. "Real-time pricing method for VPP demand response based on PER-DDPG algorithm," Energy, Elsevier, vol. 271(C).
    9. Rafael V. X. de Souza & Thales Sousa, 2024. "Analysis of Demand Response in Electric Systems with Strong Presence of Intermittent Generation Using Conditional Value-at-Risk," Energies, MDPI, vol. 17(18), pages 1-17, September.
    10. Ren, Junzhi & Zeng, Yuan & Qin, Chao & Li, Bao & Wang, Ziqiang & Yuan, Quan & Zhai, Hefeng & Li, Peng, 2024. "Characterization and application of flexible operation region of virtual power plant," Applied Energy, Elsevier, vol. 371(C).
    11. Liu, Xin & Lin, Xueshan & Qiu, Haifeng & Li, Yang & Huang, Tao, 2024. "Optimal aggregation and disaggregation for coordinated operation of virtual power plant with distribution network operator," Applied Energy, Elsevier, vol. 376(PA).
    12. Liu, Xin & Li, Yang & Wang, Li & Tang, Junbo & Qiu, Haifeng & Berizzi, Alberto & Valentin, Ilea & Gao, Ciwei, 2024. "Dynamic aggregation strategy for a virtual power plant to improve flexible regulation ability," Energy, Elsevier, vol. 297(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xin & Li, Yang & Wang, Li & Tang, Junbo & Qiu, Haifeng & Berizzi, Alberto & Valentin, Ilea & Gao, Ciwei, 2024. "Dynamic aggregation strategy for a virtual power plant to improve flexible regulation ability," Energy, Elsevier, vol. 297(C).
    2. Gu, Bo & Li, Fangxing & Mao, Chengxiong & Wang, Dan & Fan, Hua & Liu, Bin & Li, Wenhao, 2025. "A Bilevel robust coordination model for community integrated energy system with access to HFCEVs and EVs," Applied Energy, Elsevier, vol. 390(C).
    3. Liu, Xin & Lin, Xueshan & Qiu, Haifeng & Li, Yang & Huang, Tao, 2024. "Optimal aggregation and disaggregation for coordinated operation of virtual power plant with distribution network operator," Applied Energy, Elsevier, vol. 376(PA).
    4. Liu, Jinpeng & Peng, Jinchun & Liu, Hushihan & Deng, Jiaming & Song, Xiaohua, 2025. "Two-stage robust optimization of a virtual power plant considering a refined demand response," Energy, Elsevier, vol. 322(C).
    5. He, Jiaming & Tan, Qinliang & Lv, Hanyu, 2025. "Data-driven climate resilience assessment for distributed energy systems using diffusion transformer and polynomial expansions," Applied Energy, Elsevier, vol. 380(C).
    6. Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
    7. Adil, Muhammad & Mahmud, M.A. Parvez & Kouzani, Abbas Z. & Khoo, Sui Yang, 2024. "Three-stage energy trading framework for retailers, charging stations, and electric vehicles: A game-theoretic approach," Energy, Elsevier, vol. 301(C).
    8. Kaiss, Mateus & Wan, Yihao & Gebbran, Daniel & Vila, Clodomiro Unsihuay & Dragičević, Tomislav, 2025. "Review on Virtual Power Plants/Virtual Aggregators: Concepts, applications, prospects and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    9. He, Youmeng & Gu, Chunhua & Gao, Yan & Wang, Jingqi, 2025. "Bi-level day-ahead and real-time hybrid pricing model and its reinforcement learning method," Energy, Elsevier, vol. 322(C).
    10. Guo, Xiaopeng & Wang, Liyi & Ren, Dongfang, 2025. "Optimal scheduling model for virtual power plant combining carbon trading and green certificate trading," Energy, Elsevier, vol. 318(C).
    11. Ebrahimi, Mahoor & Ebrahimi, Mahan & Shafie-khah, Miadreza & Laaksonen, Hannu, 2024. "EV-observing distribution system management considering strategic VPPs and active & reactive power markets," Applied Energy, Elsevier, vol. 364(C).
    12. Jiang, Yuzheng & Dong, Jun & Huang, Hexiang, 2024. "Optimal bidding strategy for the price-maker virtual power plant in the day-ahead market based on multi-agent twin delayed deep deterministic policy gradient algorithm," Energy, Elsevier, vol. 306(C).
    13. Rong Xia & Jun Dai & Xiangjie Cheng & Jiaqing Fan & Jing Ye & Qiangang Jia & Sijie Chen & Qiang Zhang, 2024. "Demand Response of Integrated Zero-Carbon Power Plant: Model and Method," Energies, MDPI, vol. 17(14), pages 1-15, July.
    14. Cao, Jinye & Yang, Dechang & Dehghanian, Payman, 2024. "Cooperative operation for multiple virtual power plants considering energy-carbon trading: A Nash bargaining model," Energy, Elsevier, vol. 307(C).
    15. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).
    16. Elkholy, M.H. & Senjyu, Tomonobu & Elymany, Mahmoud & Gamil, Mahmoud M. & Talaat, M. & Masrur, Hasan & Ueda, Soichiro & Lotfy, Mohammed Elsayed, 2024. "Optimal resilient operation and sustainable power management within an autonomous residential microgrid using African vultures optimization algorithm," Renewable Energy, Elsevier, vol. 224(C).
    17. Sun, Lingling & Li, Haibin & Jia, Qingquan & Zhang, Gong, 2024. "Optimization method of dynamic reconfiguration in virtual power plants," Renewable Energy, Elsevier, vol. 228(C).
    18. Ding, Zhetong & Li, Yaping & Zhang, Kaifeng & Peng, Jimmy Chih-Hsien, 2024. "Two-stage dynamic aggregation involving flexible resource composition and coordination based on submodular optimization," Applied Energy, Elsevier, vol. 360(C).
    19. Xiyao Gong & Wentao Huang & Jiaxuan Li & Jun He & Bohan Zhang, 2024. "P2P Optimization Operation Strategy for Photovoltaic Virtual Power Plant Based on Asymmetric Nash Negotiation," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    20. Gorityala, Aishvaria & Radhika, Sudha & Bhattacharjee, Ankur & Mukherjee, Joyjit, 2025. "Squirrel search-based optimization of energy storage systems for electric vehicle charging stations," Energy, Elsevier, vol. 318(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2974-:d:1672067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.