IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2948-d1671249.html
   My bibliography  Save this article

An Integrated Building Energy Model in MATLAB

Author

Listed:
  • Marco Simonazzi

    (Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy)

  • Nicola Delmonte

    (Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy)

  • Paolo Cova

    (Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy)

  • Roberto Menozzi

    (Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy)

Abstract

This paper discusses the development of an Integrated Building Energy Model (IBEM) in MATLAB (R2024b) for a university campus building. In the general context of the development of integrated energy district models to guide the evolution and planning of smart energy grids for increased efficiency, resilience, and sustainability, this work describes in detail the development and use of an IBEM for a university campus building featuring a heat pump-based heating/cooling system and PV generation. The IBEM seamlessly integrates thermal and electrical aspects into a complete physical description of the energy performance of a smart building, thus distinguishing itself from co-simulation approaches in which different specialized tools are applied to the two aspects and connected at the level of data exchange. Also, the model, thanks to its physical, white-box nature, can be instanced repeatedly within the comprehensive electrical micro-grid model in which it belongs, with a straightforward change of case-specific parameter settings. The model incorporates a heat pump-based heating/cooling system and photovoltaic generation. The model’s components, including load modeling, heating/cooling system simulation, and heat pump implementation are described in detail. Simulation results illustrate the building’s detailed power consumption and thermal behavior throughout a sample year. Since the building model (along with the whole campus micro-grid model) is implemented in the MATLAB Simulink environment, it is fully portable and exploitable within a large, world-wide user community, including researchers, utility companies, and educational institutions. This aspect is particularly relevant considering that most studies in the literature employ co-simulation environments involving multiple simulation software, which increases the framework’s complexity and presents challenges in models’ synchronization and validation.

Suggested Citation

  • Marco Simonazzi & Nicola Delmonte & Paolo Cova & Roberto Menozzi, 2025. "An Integrated Building Energy Model in MATLAB," Energies, MDPI, vol. 18(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2948-:d:1671249
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Yang & Peskova, Monika & Rolando, Davide & Zucker, Gerhard & Madani, Hatef, 2023. "Estimating electric power consumption of in-situ residential heat pump systems: A data-driven approach," Applied Energy, Elsevier, vol. 352(C).
    2. Brown, Alastair & Foley, Aoife & Laverty, David & McLoone, Seán & Keatley, Patrick, 2022. "Heating and cooling networks: A comprehensive review of modelling approaches to map future directions," Energy, Elsevier, vol. 261(PB).
    3. Olympios, Andreas V. & Kourougianni, Fanourios & Arsalis, Alexandros & Papanastasiou, Panos & Pantaleo, Antonio M. & Markides, Christos N. & Georghiou, George E., 2024. "A holistic framework for the optimal design and operation of electricity, heating, cooling and hydrogen technologies in buildings," Applied Energy, Elsevier, vol. 370(C).
    4. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    5. Muhammad Hilal Khan & Azzam Ul Asar & Nasim Ullah & Fahad R. Albogamy & Muhammad Kashif Rafique, 2022. "Modeling and Optimization of Smart Building Energy Management System Considering Both Electrical and Thermal Load," Energies, MDPI, vol. 15(2), pages 1-28, January.
    6. Francisco David Moya & José Luis Torres-Moreno & José Domingo Álvarez, 2020. "Optimal Model for Energy Management Strategy in Smart Building with Energy Storage Systems and Electric Vehicles," Energies, MDPI, vol. 13(14), pages 1-18, July.
    7. Marco Simonazzi & Nicola Delmonte & Paolo Cova & Roberto Menozzi, 2023. "Models for MATLAB Simulation of a University Campus Micro-Grid," Energies, MDPI, vol. 16(16), pages 1-24, August.
    8. Anujin Bayasgalan & Yoo Shin Park & Seak Bai Koh & Sung-Yong Son, 2024. "Comprehensive Review of Building Energy Management Models: Grid-Interactive Efficient Building Perspective," Energies, MDPI, vol. 17(19), pages 1-25, September.
    9. Francesco Causone & Rossano Scoccia & Martina Pelle & Paola Colombo & Mario Motta & Sibilla Ferroni, 2021. "Neighborhood Energy Modeling and Monitoring: A Case Study," Energies, MDPI, vol. 14(12), pages 1-19, June.
    10. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    11. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    12. Izabela Rojek & Dariusz Mikołajewski & Krzysztof Galas & Adrianna Piszcz, 2025. "Advanced Deep Learning Algorithms for Energy Optimization of Smart Cities," Energies, MDPI, vol. 18(2), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reza Alijani & Fabrizio Leonforte, 2025. "Performance Analysis of Multi-Source Heat Pumps: A Regression-Based Approach to Energy Performance Estimation," Sustainability, MDPI, vol. 17(15), pages 1-16, July.
    2. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    3. Martina Pelle & Francesco Causone & Laura Maturi & David Moser, 2023. "Opaque Coloured Building Integrated Photovoltaic (BIPV): A Review of Models and Simulation Frameworks for Performance Optimisation," Energies, MDPI, vol. 16(4), pages 1-20, February.
    4. Xavier Faure & Tim Johansson & Oleksii Pasichnyi, 2022. "The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale," Energies, MDPI, vol. 15(4), pages 1-18, February.
    5. Shengyuan Guo & Wanjiang Wang & Yihuan Zhou, 2022. "Research on Energy Saving and Economy of Old Buildings Based on Parametric Design: A Case Study of a Hospital in Linyi City, Shandong Province," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    6. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Frison, Lilli & Gölzhäuser, Simon & Bitterling, Moritz & Kramer, Wolfgang, 2024. "Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation," Energy, Elsevier, vol. 307(C).
    8. Guglielmina Mutani & Valeria Todeschi & Simone Beltramino, 2020. "Energy Consumption Models at Urban Scale to Measure Energy Resilience," Sustainability, MDPI, vol. 12(14), pages 1-31, July.
    9. Stefano Converso & Paolo Civiero & Stefano Ciprigno & Ivana Veselinova & Saffa Riffat, 2023. "Toward a Fast but Reliable Energy Performance Evaluation Method for Existing Residential Building Stock," Energies, MDPI, vol. 16(9), pages 1-24, May.
    10. Camille Pajot & Nils Artiges & Benoit Delinchant & Simon Rouchier & Frédéric Wurtz & Yves Maréchal, 2019. "An Approach to Study District Thermal Flexibility Using Generative Modeling from Existing Data," Energies, MDPI, vol. 12(19), pages 1-22, September.
    11. Xie, Zichan & Wang, Haichao & Hua, Pengmin & Lahdelma, Risto, 2023. "Discrete event simulation for dynamic thermal modelling of district heating pipe," Energy, Elsevier, vol. 285(C).
    12. Saletti, Costanza & Morini, Mirko & Gambarotta, Agostino, 2022. "Smart management of integrated energy systems through co-optimization with long and short horizons," Energy, Elsevier, vol. 250(C).
    13. Malcher, Xenia & Tenorio-Rodriguez, Francis Catherine & Finkbeiner, Matthias & Gonzalez-Salazar, Miguel, 2025. "Decarbonization of district heating: A systematic review of carbon footprint and key mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    14. Muhammed Cavus & Huseyin Ayan & Mahmut Sari & Osman Akbulut & Dilum Dissanayake & Margaret Bell, 2025. "Enhancing Smart Grid Reliability Through Data-Driven Optimisation and Cyber-Resilient EV Integration," Energies, MDPI, vol. 18(17), pages 1-24, August.
    15. Alberto Barbaresi & Mattia Ceccarelli & Giulia Menichetti & Daniele Torreggiani & Patrizia Tassinari & Marco Bovo, 2022. "Application of Machine Learning Models for Fast and Accurate Predictions of Building Energy Need," Energies, MDPI, vol. 15(4), pages 1-16, February.
    16. Shiyi Song & Hong Leng & Ran Guo, 2022. "Multi-Agent-Based Model for the Urban Macro-Level Impact Factors of Building Energy Consumption on Different Types of Land," Land, MDPI, vol. 11(11), pages 1-24, November.
    17. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Semmelmann, Leo & Hertel, Matthias & Kircher, Kevin J. & Mikut, Ralf & Hagenmeyer, Veit & Weinhardt, Christof, 2024. "The impact of heat pumps on day-ahead energy community load forecasting," Applied Energy, Elsevier, vol. 368(C).
    19. Malcher, Xenia & Gonzalez-Salazar, Miguel, 2024. "Strategies for decarbonizing European district heating: Evaluation of their effectiveness in Sweden, France, Germany, and Poland," Energy, Elsevier, vol. 306(C).
    20. Saletti, Costanza & Zimmerman, Nathan & Morini, Mirko & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2021. "Enabling smart control by optimally managing the State of Charge of district heating networks," Applied Energy, Elsevier, vol. 283(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2948-:d:1671249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.