IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2762-d1664770.html
   My bibliography  Save this article

Exergy Analysis of 500 MW Power Unit Based on Direct Measurement Data

Author

Listed:
  • Michalina Kurkus-Gruszecka

    (Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland)

  • Łukasz Szabłowski

    (Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland)

  • Olaf Dybiński

    (Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland)

  • Piotr Krawczyk

    (Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland)

  • Krzysztof Badyda

    (Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland)

  • Grzegorz Kotte

    (Polenergia S.A., Krucza 24/26, 00-526 Warsaw, Poland)

Abstract

This paper presents an exergy analysis of a 500 MW unit based on actual measurement data. The mathematical model of the system was built in the Aspen HYSYS 2.4 software. The analysis was carried out for two operating states of the unit, at nominal load and at minimum technical load, based on data from two measurement campaigns carried out specifically for this study. The use of measurement data allows an accurate representation of the unit’s current operating conditions, which is crucial for the accuracy of the analysis and the practical implementation of the results obtained. The results show that the dominant sources of exergy losses are the irreversibilities associated with combustion and boiler heat transfer, which account for more than 60% of total exergy losses. The article makes an important contribution to sustainability by identifying opportunities to increase the operating efficiency of the power unit and reduce CO 2 emissions. Proposed technical modifications, such as the modernisation of air heaters, the use of inverters in ventilation systems, or the optimisation of heat exchangers in the turbine system, can significantly improve energy efficiency and reduce the unit’s environmental impact. The analysis provides a valuable resource for the development of energy technologies that promote efficiency and sustainable resource use.

Suggested Citation

  • Michalina Kurkus-Gruszecka & Łukasz Szabłowski & Olaf Dybiński & Piotr Krawczyk & Krzysztof Badyda & Grzegorz Kotte, 2025. "Exergy Analysis of 500 MW Power Unit Based on Direct Measurement Data," Energies, MDPI, vol. 18(11), pages 1-33, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2762-:d:1664770
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fu, Yue & Huang, Yan & Xin, Haozhe & Liu, Ming & Wang, Liyuan & Yan, Junjie, 2024. "The pressure sliding operation strategy of the carbon capture system integrated within a coal-fired power plant: Influence factors and energy saving potentials," Energy, Elsevier, vol. 307(C).
    2. Krawczyk, Piotr & Szabłowski, Łukasz & Karellas, Sotirios & Kakaras, Emmanuel & Badyda, Krzysztof, 2018. "Comparative thermodynamic analysis of compressed air and liquid air energy storage systems," Energy, Elsevier, vol. 142(C), pages 46-54.
    3. Szablowski, Lukasz & Krawczyk, Piotr & Badyda, Krzysztof & Karellas, Sotirios & Kakaras, Emmanuel & Bujalski, Wojciech, 2017. "Energy and exergy analysis of adiabatic compressed air energy storage system," Energy, Elsevier, vol. 138(C), pages 12-18.
    4. Jawed Ahmed Jamali & Abdul Ghafoor Memon & Khanji Harijan & Zeshan Abbas & Aamir Khuwaja, 2017. "Energy and Exergy Analyses of Boiler and its Parts of Lakhra Coal Power Plant (FBC) Jamshoro," Noble International Journal of Scientific Research, Noble Academic Publsiher, vol. 1(10), pages 104-111, October.
    5. Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).
    6. da Silva Neves, Marcus Vinicius & Szklo, Alexandre & Schaeffer, Roberto, 2023. "Fossil fuel facilities exergy return for a frontier of analysis incorporating CO2 capture: The case of a coal power plant," Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    2. He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
    3. Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
    4. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    5. Bartela, Łukasz, 2020. "A hybrid energy storage system using compressed air and hydrogen as the energy carrier," Energy, Elsevier, vol. 196(C).
    6. Stefano Ubertini & Andrea Luigi Facci & Luca Andreassi, 2017. "Hybrid Hydrogen and Mechanical Distributed Energy Storage," Energies, MDPI, vol. 10(12), pages 1-16, December.
    7. Fan, Jinyang & Liu, Wei & Jiang, Deyi & Chen, Junchao & Ngaha Tiedeu, William & Chen, Jie & JJK, Deaman, 2018. "Thermodynamic and applicability analysis of a hybrid CAES system using abandoned coal mine in China," Energy, Elsevier, vol. 157(C), pages 31-44.
    8. Yang, Biao & Li, Deyou & Wang, Chuanchao & Zhang, Yi & Fu, Xiaolong & Wang, Hongjie, 2024. "Performance analysis of a novel multi-machine compensable pumped hydro compressed air energy storage system," Energy, Elsevier, vol. 310(C).
    9. Ricardo Raineri, 2025. "Power Shift: Decarbonization and the New Dynamics of Energy Markets," Energies, MDPI, vol. 18(3), pages 1-52, February.
    10. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    11. Vecchi, Andrea & Naughton, James & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Multi-mode operation of a Liquid Air Energy Storage (LAES) plant providing energy arbitrage and reserve services – Analysis of optimal scheduling and sizing through MILP modelling with integrated ther," Energy, Elsevier, vol. 200(C).
    12. Jawed Ahmed Jamali, 2020. "Parametric Based Exergy Analysis Of Induced Draught Cooling Towers Of The Thermal And The Lakhra Power Plants Jamshoro," Noble International Journal of Scientific Research, Noble Academic Publsiher, vol. 4(8), pages 73-79, December.
    13. Yang, S., 2022. "Solar-driven liquid air power plant modeling, design space exploration, and multi-objective optimization," Energy, Elsevier, vol. 246(C).
    14. Cui, Shuangshuang & He, Qing & Shi, Xingping & Liu, Yixue & Du, Dongmei, 2021. "Dynamic characteristics analysis for energy release process of liquid air energy storage system," Renewable Energy, Elsevier, vol. 180(C), pages 744-755.
    15. Lin, Xiaolong & Meng, Xianchen & Song, Huchao & Liu, Yinhe, 2024. "Efficiency improvement and flexibility enhancement by molten salt heat storage for integrated gasification chemical-looping combustion combined cycle under partial loads," Energy, Elsevier, vol. 303(C).
    16. Li, Ran & Tang, Feiran & Pan, Jie & Cao, Qinghan & Hu, Tinglong & Wang, Ke, 2025. "Energy integration of LNG cold energy power generation and liquefied air energy storage: Process design, optimization and analysis," Energy, Elsevier, vol. 321(C).
    17. Zhang, Yuan & Shen, Xiajie & Tian, Zhen & Kan, Ankang & Yang, Chao & Gao, Wenzhong & Yang, Ke, 2025. "Comparative study of operating modes on a gaseous two-stage compressed carbon dioxide energy storage system through energy and exergy analysis based on dynamic simulation," Energy, Elsevier, vol. 316(C).
    18. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
    19. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    20. Fan, Mengqi & Liu, Chuanping & Tong, Lige & Yin, Shaowu & zhang, Peikun & Zuo, Zhongqi & Wang, Li & Ding, Yulong, 2025. "A cold thermal energy storage based on ASU-LAES system: Energy, exergy, and economic analysis," Energy, Elsevier, vol. 314(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2762-:d:1664770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.