IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2588-d1657616.html
   My bibliography  Save this article

Research on Intelligent Vehicle Tracking Control and Energy Consumption Optimization Based on Dilated Convolutional Model Predictive Control

Author

Listed:
  • Lanxin Li

    (Shandong Key Laboratory of Technologies and Systems for Intelligent Construction Equipment, Shandong Jiaotong University, Jinan 250357, China
    School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China)

  • Wenhui Pei

    (Shandong Key Laboratory of Technologies and Systems for Intelligent Construction Equipment, Shandong Jiaotong University, Jinan 250357, China
    School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China)

  • Qi Zhang

    (School of Control Science and Engineering, Shandong University, Jinan 250061, China)

Abstract

To address the limitations of low modeling accuracy in physics-based methods—which often lead to poor vehicle-tracking performance and high energy consumption—this paper proposes an intelligent vehicle modeling and trajectory tracking control method based on a dilated convolutional neural network (DCNN). First, an effective dataset was constructed by incorporating historical state information, such as longitudinal tire forces and vehicle speed, to accurately capture vehicle dynamic characteristics and reflect energy variations during motion. Next, a dilated convolutional vehicle system model (DCVSM) was designed by combining vehicle dynamics with data-driven modeling techniques. This model was then integrated into a model predictive control (MPC) framework. By solving a nonlinear optimization problem, a dilated convolutional model predictive controller (DCMPC) was developed to enhance tracking accuracy and reduce energy consumption. Finally, a co-simulation environment based on CarSim and Simulink was used to evaluate the proposed method. Comparative analyses with a traditional MPC and a neural network-based MPC (NNMPC) demonstrated that the DCMPC consistently exhibited superior trajectory tracking performance under various test scenarios. Furthermore, by computing the tire-slip energy loss rate, the proposed method was shown to offer significant advantages in improving energy efficiency.

Suggested Citation

  • Lanxin Li & Wenhui Pei & Qi Zhang, 2025. "Research on Intelligent Vehicle Tracking Control and Energy Consumption Optimization Based on Dilated Convolutional Model Predictive Control," Energies, MDPI, vol. 18(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2588-:d:1657616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gong, Xun & Wang, Xiaozhe & Cao, Bo, 2023. "On data-driven modeling and control in modern power grids stability: Survey and perspective," Applied Energy, Elsevier, vol. 350(C).
    2. Alessia Musa & Michele Pipicelli & Matteo Spano & Francesco Tufano & Francesco De Nola & Gabriele Di Blasio & Alfredo Gimelli & Daniela Anna Misul & Gianluca Toscano, 2021. "A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems," Energies, MDPI, vol. 14(23), pages 1-24, November.
    3. Arroyo, Javier & Manna, Carlo & Spiessens, Fred & Helsen, Lieve, 2022. "Reinforced model predictive control (RL-MPC) for building energy management," Applied Energy, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    2. Elio Chiodo & Pasquale Di Palma & Maurizio Fantauzzi & Davide Lauria & Fabio Mottola & Domenico Villacci, 2024. "Linear Quadratic Gaussian Integral Control for Secondary Voltage Regulation," Energies, MDPI, vol. 18(1), pages 1-18, December.
    3. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).
    4. Luna, José Diogo Forte de Oliveira & Naspolini, Amir & Reis, Guilherme Nascimento Gouvêa dos & Mendes, Paulo Renato da Costa & Normey-Rico, Julio Elias, 2024. "A novel joint energy and demand management system for smart houses based on model predictive control, hybrid storage system and quality of experience concepts," Applied Energy, Elsevier, vol. 369(C).
    5. Tian, Xiaoyu & Zhang, Hanwen & Liu, Lin & Huang, Jiahao & Liu, Liru & Liu, Jing, 2024. "Establishment of LCZ-based urban building energy consumption dataset in hot and humid subtropical regions through a bottom-up method," Applied Energy, Elsevier, vol. 368(C).
    6. Sebastian, Oliva H. & Carlos, Bahamonde D., 2024. "Trade-off between frequency stability and renewable generation – Studying virtual inertia from solar PV and operating stability constraints," Renewable Energy, Elsevier, vol. 232(C).
    7. Avisek Naug & Marcos Quinones-Grueiro & Gautam Biswas, 2025. "An End-to-End Relearning Framework for Building Energy Optimization," Energies, MDPI, vol. 18(6), pages 1-23, March.
    8. Fu, Yangyang & Xu, Shichao & Zhu, Qi & O’Neill, Zheng & Adetola, Veronica, 2023. "How good are learning-based control v.s. model-based control for load shifting? Investigations on a single zone building energy system," Energy, Elsevier, vol. 273(C).
    9. Wang, Xuezheng & Dong, Bing, 2024. "Long-term experimental evaluation and comparison of advanced controls for HVAC systems," Applied Energy, Elsevier, vol. 371(C).
    10. Davide Fop & Ali Reza Yaghoubi & Alfonso Capozzoli, 2024. "Validation of a Model Predictive Control Strategy on a High Fidelity Building Emulator," Energies, MDPI, vol. 17(20), pages 1-20, October.
    11. Zhou, Xinlei & Xue, Shan & Du, Han & Ma, Zhenjun, 2023. "Optimization of building demand flexibility using reinforcement learning and rule-based expert systems," Applied Energy, Elsevier, vol. 350(C).
    12. Ding, Yan & Zhang, Haozheng & Yang, Xiaochen & Tian, Zhe & Huang, Chen, 2024. "An adaptive switching control model for air conditioning systems based on information completeness," Applied Energy, Elsevier, vol. 375(C).
    13. Hu, Zehuan & Gao, Yuan & Sun, Luning & Mae, Masayuki & Imaizumi, Taiji, 2024. "Improved robust model predictive control for residential building air conditioning and photovoltaic power generation with battery energy storage system under weather forecast uncertainty," Applied Energy, Elsevier, vol. 371(C).
    14. Rémy Rigo-Mariani & Alim Yakub, 2024. "Decision Tree Variations and Online Tuning for Real-Time Control of a Building in a Two-Stage Management Strategy," Energies, MDPI, vol. 17(11), pages 1-17, June.
    15. Hou, Guolian & Ye, Lingling & Huang, Ting & Huang, Congzhi, 2024. "Intelligent modeling of combined heat and power unit under full operating conditions via improved crossformer and precise sparrow search algorithm," Energy, Elsevier, vol. 308(C).
    16. Wang, Xiangwei & Wang, Peng & Huang, Renke & Zhu, Xiuli & Arroyo, Javier & Li, Ning, 2025. "Safe deep reinforcement learning for building energy management," Applied Energy, Elsevier, vol. 377(PA).
    17. Pier Giuseppe Anselma, 2022. "Dynamic Programming Based Rapid Energy Management of Hybrid Electric Vehicles with Constraints on Smooth Driving, Battery State-of-Charge and Battery State-of-Health," Energies, MDPI, vol. 15(5), pages 1-25, February.
    18. Wang, Hao & Chen, Xiwen & Vital, Natan & Duffy, Edward & Razi, Abolfazl, 2024. "Energy optimization for HVAC systems in multi-VAV open offices: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 356(C).
    19. Amal Azzi & Mohamed Tabaa & Badr Chegari & Hanaa Hachimi, 2024. "Balancing Sustainability and Comfort: A Holistic Study of Building Control Strategies That Meet the Global Standards for Efficiency and Thermal Comfort," Sustainability, MDPI, vol. 16(5), pages 1-36, March.
    20. Gao, Renjing & Zhou, Guangli & Wang, Qi, 2024. "Real-time three-level energy management strategy for series hybrid wheel loaders based on WG-MPC," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2588-:d:1657616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.