IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2442-d1652604.html
   My bibliography  Save this article

Optimization Scheduling of Integrated Energy Systems Considering Power Flow Constraints

Author

Listed:
  • Sheng Zou

    (State Grid Jiangsu Electric Power Co., Ltd., Economic and Technical Research Institute, Nanjing 211106, China)

  • Xuanjun Zong

    (State Grid Jiangsu Electric Power Co., Ltd., Economic and Technical Research Institute, Nanjing 211106, China)

  • Quan Chen

    (State Grid Jiangsu Electric Power Co., Ltd., Economic and Technical Research Institute, Nanjing 211106, China)

  • Wang Zhang

    (State Grid Jiangsu Electric Power Co., Ltd., Economic and Technical Research Institute, Nanjing 211106, China)

  • Hongwei Zhou

    (State Grid Jiangsu Electric Power Co., Ltd., Economic and Technical Research Institute, Nanjing 211106, China)

Abstract

To further investigate the complementary characteristics among subsystems of the combined electricity–gas–heat system (CEGHS) and to enhance the renewable energy accommodation capability, this study proposes a comprehensive optimization scheduling framework. First, an optimization model is developed with the objective of minimizing the total system cost, incorporating key coupling components such as combined heat and power units, gas turbines, and power-to-gas (P2G) facilities. Second, to address the limitations of traditional robust optimization in managing wind power uncertainty, a distributionally robust optimization scheduling model based on Hausdorff distance is constructed, employing a data-driven uncertainty set to accurately characterize wind power fluctuations. Furthermore, to tackle the computational challenges posed by complex nonlinear equations within the model, various linearization techniques are applied, and a two-stage distributionally robust optimization approach is introduced to enhance solution efficiency. Simulation studies on an improved CEGHS system validate the feasibility and effectiveness of the proposed model, demonstrating significant improvements in both economic performance and system robustness compared to conventional methods.

Suggested Citation

  • Sheng Zou & Xuanjun Zong & Quan Chen & Wang Zhang & Hongwei Zhou, 2025. "Optimization Scheduling of Integrated Energy Systems Considering Power Flow Constraints," Energies, MDPI, vol. 18(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2442-:d:1652604
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaodong Yang & Xiaotong Hua & Lun Cheng & Tao Wang & Yujing Su, 2025. "Optimization Scheduling of Multi-Regional Systems Considering Secondary Frequency Drop," Energies, MDPI, vol. 18(15), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Jinbo & Li, Zhigang & Wu, Q.H., 2017. "Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition," Applied Energy, Elsevier, vol. 206(C), pages 1508-1522.
    2. Jingjing Zhai & Xiaobei Wu & Zihao Li & Shaojie Zhu & Bo Yang & Haoming Liu, 2021. "Day-Ahead and Intra-Day Collaborative Optimized Operation among Multiple Energy Stations," Energies, MDPI, vol. 14(4), pages 1-33, February.
    3. Chun Wei & Xiangzhi Xu & Youbing Zhang & Xiangshan Li, 2019. "A Survey on Optimal Control and Operation of Integrated Energy Systems," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    4. Beigvand, Soheil Derafshi & Abdi, Hamdi & La Scala, Massimo, 2017. "A general model for energy hub economic dispatch," Applied Energy, Elsevier, vol. 190(C), pages 1090-1111.
    5. Chen, Xi & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming & Yang, Ming & He, Suoying & Liang, Jun, 2020. "Optimal operation of integrated energy system considering dynamic heat-gas characteristics and uncertain wind power," Energy, Elsevier, vol. 198(C).
    6. Zhou, Yixing & Hou, Hongjuan & Yan, Haoran & Wang, Xi & Zhou, Rhonin, 2025. "Data-driven distributionally robust stochastic optimal dispatching method of integrated energy system considering multiple uncertainties," Energy, Elsevier, vol. 325(C).
    7. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    9. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Zhang, Xiurong & Wang, Li, 2017. "Estimation of the failure probability of an integrated energy system based on the first order reliability method," Energy, Elsevier, vol. 134(C), pages 1068-1078.
    10. Ignacio Blanco & Daniela Guericke & Anders N. Andersen & Henrik Madsen, 2018. "Operational Planning and Bidding for District Heating Systems with Uncertain Renewable Energy Production," Energies, MDPI, vol. 11(12), pages 1-26, November.
    11. Chen, Yuwei & Guo, Qinglai & Sun, Hongbin & Li, Zhengshuo & Pan, Zhaoguang & Wu, Wenchuan, 2019. "A water mass method and its application to integrated heat and electricity dispatch considering thermal inertias," Energy, Elsevier, vol. 181(C), pages 840-852.
    12. Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).
    13. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    14. Fu, Xueqian & Sun, Hongbin & Guo, Qinglai & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Uncertainty analysis of an integrated energy system based on information theory," Energy, Elsevier, vol. 122(C), pages 649-662.
    15. Wang, Chengshan & Lv, Chaoxian & Li, Peng & Song, Guanyu & Li, Shuquan & Xu, Xiandong & Wu, Jianzhong, 2018. "Modeling and optimal operation of community integrated energy systems: A case study from China," Applied Energy, Elsevier, vol. 230(C), pages 1242-1254.
    16. Zhao, Ning & You, Fengqi, 2020. "Can renewable generation, energy storage and energy efficient technologies enable carbon neutral energy transition?," Applied Energy, Elsevier, vol. 279(C).
    17. Gao, Chong & Lin, Junjie & Zeng, Jianfeng & Han, Fengwu, 2022. "Wind-photovoltaic co-generation prediction and energy scheduling of low-carbon complex regional integrated energy system with hydrogen industry chain based on copula-MILP," Applied Energy, Elsevier, vol. 328(C).
    18. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    19. Yuan, Zhao & Wogrin, Sonja & Hesamzadeh, Mohammad Reza, 2017. "Towards the Power Synergy Hub (PSHub): Coordinating the energy dispatch of super grid by modified Benders decomposition," Applied Energy, Elsevier, vol. 205(C), pages 1419-1434.
    20. Hossein Faramarzi & Navid Ghaffarzadeh & Farhad Shahnia, 2025. "Intelligent Management of Integrated Energy Systems with a Stochastic Multi-Objective Approach with Emphasis on Demand Response, Energy Storage Devices, and Power-to-Gas," Sustainability, MDPI, vol. 17(7), pages 1-28, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2442-:d:1652604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.