IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p39-d1553601.html
   My bibliography  Save this article

Development of a Hydrogen Fuel Cell Hybrid Urban Air Mobility System Model Using a Hydrogen Metal Hydride Tank

Author

Listed:
  • Sanghyun Yun

    (Department of Mechanical Engineering, Kongju National University, 1223-24 Cheonan-daero, Cheonan-si 31080, Republic of Korea)

  • Seok Yeon Im

    (Mechanical Engineering Education Department, Chungnam National University, Daejeon 34134, Republic of Korea)

  • Jaeyoung Han

    (Department of Mechanical Engineering, Kongju National University, 1223-24 Cheonan-daero, Cheonan-si 31080, Republic of Korea
    Department of Future Automotive Engineering, Kongju National University, 1223-24 Cheonan-daero, Cheonan-si 31080, Republic of Korea
    Institute of Green Car Technology, Kongju National University, 1223-24 Cheonan-daero, Seobuk-gu, Cheonan-si 31080, Republic of Korea)

Abstract

Hydrogen fuel cell-based UAM (urban air mobility) systems are gaining significant attention due to their advantages of higher energy density and longer flight durations compared to conventional battery-based UAM systems. To further improve the flight times of current UAM systems, various hydrogen storage methods, such as liquid hydrogen and hydrogen metal hydrides, are being utilized. Among these, hydrogen metal hydrides offer the advantage of high safety, as they do not require the additional technologies needed for high-pressure gaseous hydrogen storage or the maintenance of cryogenic temperatures for liquid hydrogen. Furthermore, because of the relatively slower dynamic response of hydrogen fuel cell systems compared to batteries, they are often integrated into hybrid configurations with batteries, necessitating an efficient power management system. In this study, a UAM system was developed by integrating a hydrogen fuel cell system with hydrogen metal hydrides and batteries in a hybrid configuration. Additionally, a state machine control approach was applied to a distribution valve for the endothermic reaction required for hydrogen desorption from the hydrogen metal hydrides. This design utilized waste heat generated by the fuel cell stack to facilitate hydrogen release. Furthermore, a fuzzy logic control-based power management system was implemented to ensure efficient power distribution during flight. The results show that approximately 43% of the waste heat generated by the stack was recovered through the tank system.

Suggested Citation

  • Sanghyun Yun & Seok Yeon Im & Jaeyoung Han, 2024. "Development of a Hydrogen Fuel Cell Hybrid Urban Air Mobility System Model Using a Hydrogen Metal Hydride Tank," Energies, MDPI, vol. 18(1), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:39-:d:1553601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/39/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/39/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cohen, Adam P & Shaheen, Susan A PhD & Farrar, Emily M, 2021. "Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8nh0s83q, Institute of Transportation Studies, UC Berkeley.
    2. Boukoberine, Mohamed Nadir & Zhou, Zhibin & Benbouzid, Mohamed, 2019. "A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects," Applied Energy, Elsevier, vol. 255(C).
    3. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    4. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moon-Seop Choi & Chong-Eun Kim, 2025. "Highly Reliable Power Circuit Configuration with SiC Chopper Module for Hybrid Fuel Cell and Battery Power System for Urban Air Mobility (UAM) Applications," Energies, MDPI, vol. 18(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Dagang & Yi, Fengyan & Hu, Donghai & Li, Jianwei & Yang, Qingqing & Wang, Jing, 2023. "Online optimization of energy management strategy for FCV control parameters considering dual power source lifespan decay synergy," Applied Energy, Elsevier, vol. 348(C).
    2. Tian, Weiyong & Zhang, Xiaohui & Zhou, Peng & Guo, Ruixue, 2025. "Review of energy management technologies for unmanned aerial vehicles powered by hydrogen fuel cell," Energy, Elsevier, vol. 323(C).
    3. Arkadiusz Adamczyk, 2020. "Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells," Energies, MDPI, vol. 13(19), pages 1-15, October.
    4. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    5. Li, Niansi & Liu, Xiaoyong & Yu, Bendong & Li, Liang & Xu, Jianqiang & Tan, Qiong, 2021. "Study on the environmental adaptability of lithium-ion battery powered UAV under extreme temperature conditions," Energy, Elsevier, vol. 219(C).
    6. Wang, Xin & Atkin, Jason & Bozhko, Serhiy, 2025. "Fault-tolerant hierarchical energy management system for an electrical power system on more-electric aircraft," Applied Energy, Elsevier, vol. 379(C).
    7. Snežana Tadić & Mladen Krstić & Ljubica Radovanović, 2024. "Assessing Strategies to Overcome Barriers for Drone Usage in Last-Mile Logistics: A Novel Hybrid Fuzzy MCDM Model," Mathematics, MDPI, vol. 12(3), pages 1-25, January.
    8. Günther, Sebastian & Bensmann, Astrid & Hanke-Rauschenbach, Richard, 2025. "Representative energy management strategies for hybrid energy storage systems derived from a meta-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    9. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    10. Liu, Xinzhi & Qi, Nanjian & Dai, Keren & Yin, Yajiang & Zhao, Jiahao & Wang, Xiaofeng & You, Zheng, 2022. "Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm," Energy, Elsevier, vol. 239(PE).
    11. Zhang, Dongfang & Sun, Wei & Zou, Yuan & Zhang, Xudong, 2025. "Energy management in HDHEV with dual APUs: Enhancing soft actor-critic using clustered experience replay and multi-dimensional priority sampling," Energy, Elsevier, vol. 319(C).
    12. Ariza-Montes, Antonio & Quan, Wei & Radic, Aleksandar & Koo, Bonhak & Kim, Jinkyung Jenny & Chua, Bee-Lia & Han, Heesup, 2023. "Understanding the behavioral intention to use urban air autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    13. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).
    14. Zhou, Kehan & Liu, Zhiwei & Zhang, Xin & Liu, Hang & Meng, Nan & Huang, Jianmei & Qi, Mingjing & Song, Xizhen & Yan, Xiaojun, 2022. "A kW-level integrated propulsion system for UAV powered by PEMFC with inclined cathode flow structure design," Applied Energy, Elsevier, vol. 328(C).
    15. Ma, Bin & Li, Peng-Hui, 2025. "Optimal flexible power allocation energy management strategy for hybrid energy storage system with genetic algorithm based model predictive control," Energy, Elsevier, vol. 324(C).
    16. Chiara Caterina Ditta & Maria Nadia Postorino, 2023. "Three-Dimensional Urban Air Networks for Future Urban Air Transport Systems," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    17. Shangzhe Yu & Dominik Schäfer & Shidong Zhang & Roland Peters & Felix Kunz & Rüdiger-A. Eichel, 2023. "A Three-Dimensional Time-Dependent Model of the Degradation Caused by Chromium Poisoning in a Solid Oxide Fuel Cell Stack," Energies, MDPI, vol. 16(23), pages 1-23, November.
    18. Paolo Aliberti & Marco Minneci & Marco Sorrentino & Fabrizio Cuomo & Carmine Musto, 2025. "Efficiency-Based Modeling of Aeronautical Proton Exchange Membrane Fuel Cell Systems for Integrated Simulation Framework Applications," Energies, MDPI, vol. 18(4), pages 1-29, February.
    19. Cheng, Shen & Zhao, Gaiju & Gao, Ming & Shi, Yuetao & Huang, Mingming & Yousefi, Nasser, 2021. "Optimal hybrid energy system for locomotive utilizing improved Locust Swarm optimizer," Energy, Elsevier, vol. 218(C).
    20. Alicia Triviño & José M. González-González & José A. Aguado, 2021. "Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review," Energies, MDPI, vol. 14(6), pages 1-21, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:39-:d:1553601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.