IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2024i1p122-d1557742.html
   My bibliography  Save this article

Modeling Energetic Effectiveness and Breakage Intensity in Mining and Processing Circuits on Limestone Crushing in HPGR

Author

Listed:
  • Agnieszka Saramak

    (Department of Environmental Engineering, Faculty of Civil Engineering and Raw Materials Economy, AGH University of Krakow, 30-059 Krakow, Poland)

  • Daniel Saramak

    (Department of Environmental Engineering, Faculty of Civil Engineering and Raw Materials Economy, AGH University of Krakow, 30-059 Krakow, Poland)

Abstract

This article refers to the aspects of energy consumption and comminution effectiveness in the mineral processing sector through the evaluation of limestone crushing in a high-pressure grinding roll. The investigative program included a series of crushing tests on limestone samples in a laboratory High Pressure Grinding Rolls (HPGR) press device. The tests were carried out in the scheme of factorial experiment with three levels of pressure (Fsp) and three levels of material moisture (M). The major finding was to determine energetic models referring to consumption of energy and reduction in Bond work index Wi, designed as a function of operational pressure in HPGR and material moisture. The other investigative results encompassed models on fineness effectiveness and throughput. The models appeared statistically significant and showed relationships both with pressure and moisture. The results of the investigations showed that Bond work index Wi decreases when the Fsp increases, but Wi increases as the moisture content decreases. The calculated models also showed an increase in unit energy consumption in the press together with increasing of Fsp and moisture. The models for throughput and finest particle content in HPGR product showed in turn that increasing of Fsp and M results in decreasing of the productivity.

Suggested Citation

  • Agnieszka Saramak & Daniel Saramak, 2024. "Modeling Energetic Effectiveness and Breakage Intensity in Mining and Processing Circuits on Limestone Crushing in HPGR," Energies, MDPI, vol. 18(1), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:122-:d:1557742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saramak, Daniel & Leśniak, Katarzyna, 2024. "Impact of HPGR operational pressing force and material moisture on energy consumption and crushing product fineness in high-pressure grinding processes," Energy, Elsevier, vol. 302(C).
    2. Sergey Zhironkin & Elena Dotsenko, 2023. "Review of Transition from Mining 4.0 to 5.0 in Fossil Energy Sources Production," Energies, MDPI, vol. 16(15), pages 1-35, August.
    3. Legendre, Daniel & Zevenhoven, Ron, 2014. "Assessing the energy efficiency of a jaw crusher," Energy, Elsevier, vol. 74(C), pages 119-130.
    4. Numbi, B.P. & Zhang, J. & Xia, X., 2014. "Optimal energy management for a jaw crushing process in deep mines," Energy, Elsevier, vol. 68(C), pages 337-348.
    5. Atmaca, Adem & Kanoglu, Mehmet, 2012. "Reducing energy consumption of a raw mill in cement industry," Energy, Elsevier, vol. 42(1), pages 261-269.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saramak, Daniel & Leśniak, Katarzyna, 2024. "Impact of HPGR operational pressing force and material moisture on energy consumption and crushing product fineness in high-pressure grinding processes," Energy, Elsevier, vol. 302(C).
    2. Ruiyue Liu & Boqiang Shi & Guoguang Li & Hongjun Yu, 2018. "Influence of Operating Conditions and Crushing Chamber on Energy Consumption of Cone Crusher," Energies, MDPI, vol. 11(5), pages 1-16, May.
    3. Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).
    4. Mikulčić, Hrvoje & Vujanović, Milan & Ashhab, Moh'd Sami & Duić, Neven, 2014. "Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone," Energy, Elsevier, vol. 75(C), pages 89-96.
    5. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    6. Witold Kawalec & Robert Król & Natalia Suchorab, 2020. "Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    7. Lyudmila Davidenko & Nurzhanat Sherimova & Saule Kunyazova & Maral Amirova & Ansagan Beisembina, 2024. "Sustainable Economy: The Eco-Branding of an Industrial Region in Kazakhstan," Sustainability, MDPI, vol. 16(1), pages 1-16, January.
    8. Zhang, Shirong & Mao, Wei, 2017. "Optimal operation of coal conveying systems assembled with crushers using model predictive control methodology," Applied Energy, Elsevier, vol. 198(C), pages 65-76.
    9. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Optimal control of heat pump water heater-instantaneous shower using integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 201(C), pages 332-342.
    11. Luigi Coppola & Denny Coffetti & Elena Crotti, 2018. "Plain and Ultrafine Fly Ashes Mortars for Environmentally Friendly Construction Materials," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    12. Yin, Qian & Du, Wen-Jing & Ji, Xing-Lin & Cheng, Lin, 2016. "Optimization design and economic analyses of heat recovery exchangers on rotary kilns," Applied Energy, Elsevier, vol. 180(C), pages 743-756.
    13. Ruonan Meng & Qinglin Zhao & Miaomiao Wu & Quanming Long & Mingkai Zhou, 2021. "A Survey and Analysis on Electricity Consumption of Raw Material Mill System in China Cement Industry between 2014 and 2019," Sustainability, MDPI, vol. 13(3), pages 1-11, January.
    14. Xi, Xian & Jiang, Shuguang & Shi, Quanlin, 2023. "Study on the flow and bonding-reinforcement characteristics of composite foam slurry material used to block mine leakage," Energy, Elsevier, vol. 263(PD).
    15. Yin, Qian & Du, Wen-Jing & Cheng, Lin, 2017. "Optimization design of heat recovery systems on rotary kilns using genetic algorithms," Applied Energy, Elsevier, vol. 202(C), pages 153-168.
    16. Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
    17. Wanjiru, Evan M. & Xia, Xiaohua, 2015. "Energy-water optimization model incorporating rooftop water harvesting for lawn irrigation," Applied Energy, Elsevier, vol. 160(C), pages 521-531.
    18. Fellaou, S. & Bounahmidi, T., 2018. "Analyzing thermodynamic improvement potential of a selected cement manufacturing process: Advanced exergy analysis," Energy, Elsevier, vol. 154(C), pages 190-200.
    19. Numbi, B.P. & Xia, X., 2016. "Optimal energy control of a crushing process based on vertical shaft impactor," Applied Energy, Elsevier, vol. 162(C), pages 1653-1661.
    20. Lin, Hsin-Chiu & Chan, David Yih-Liang & Lin, Wei-Chun & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2014. "Status of energy conservation in Taiwan's pulp and paper industry," Energy, Elsevier, vol. 73(C), pages 680-685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:122-:d:1557742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.