IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2025-d1382544.html
   My bibliography  Save this article

Thermal Stress in Full-Size Solid Oxide Fuel Cell Stacks by Multi-Physics Modeling

Author

Listed:
  • Xueping Zhang

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China)

  • Mingtao Wu

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China)

  • Liusheng Xiao

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China)

  • Hao Wang

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China)

  • Yingqi Liu

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China)

  • Dingrong Ou

    (Hydrogen Energy Research Center, China Southern Power Grid Co., Ltd., Guangzhou 510335, China)

  • Jinliang Yuan

    (Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China)

Abstract

Mechanical failures in the operating stacks of solid oxide fuel cells (SOFCs) are frequently related to thermal stresses generated by a temperature gradient and its variation. In this study, a computational fluid dynamics (CFD) model is developed and further applied in full-size SOFC stacks, which are fully coupled and implemented for analysis of heat flow electrochemical phenomena, aiming to predict thermal stress distribution. The primary object of the present investigation is to explore features and characteristics of the thermal stress influenced by electrochemical reactions and various transport processes within the stacks. It is revealed that the volume ratio of the higher thermal stress region differs nearly 30% for different stack flow configurations; the highest probability of potential failure appears in the cell cathodes; the more cells applied in the stack, the greater the difference in the predicted temperature/thermal stress between the cells; the counter-flow stack performs the best in terms of output power, but the predicted thermal stress is also higher; the cross-flow stack exhibits the lowest thermal stress and a lower output power; and although the temperature and thermal stress distributions are similar, the differences between the unit cells are bigger in the longer stacks than those predicted for shorter stacks. The findings from this study may provide a useful guide for assessing the thermal behavior and impact on SOFC performance.

Suggested Citation

  • Xueping Zhang & Mingtao Wu & Liusheng Xiao & Hao Wang & Yingqi Liu & Dingrong Ou & Jinliang Yuan, 2024. "Thermal Stress in Full-Size Solid Oxide Fuel Cell Stacks by Multi-Physics Modeling," Energies, MDPI, vol. 17(9), pages 1-25, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2025-:d:1382544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miao, Xing-Yuan & Rizvandi, Omid Babaie & Navasa, Maria & Frandsen, Henrik Lund, 2021. "Modelling of local mechanical failures in solid oxide cell stacks," Applied Energy, Elsevier, vol. 293(C).
    2. Banerjee, A. & Wang, Y. & Diercks, J. & Deutschmann, O., 2018. "Hierarchical modeling of solid oxide cells and stacks producing syngas via H2O/CO2 Co-electrolysis for industrial applications," Applied Energy, Elsevier, vol. 230(C), pages 996-1013.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).
    2. Gong, Chengyuan & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel flow field design with flow re-distribution for advanced thermal management in Solid oxide fuel cell," Applied Energy, Elsevier, vol. 331(C).
    3. Wang, Ligang & Rao, Megha & Diethelm, Stefan & Lin, Tzu-En & Zhang, Hanfei & Hagen, Anke & Maréchal, François & Van herle, Jan, 2019. "Power-to-methane via co-electrolysis of H2O and CO2: The effects of pressurized operation and internal methanation," Applied Energy, Elsevier, vol. 250(C), pages 1432-1445.
    4. Nielsen, Anders S. & Peppley, Brant A. & Burheim, Odne S., 2023. "Controlling the contribution of transport mechanisms in solid oxide co-electrolysis cells to improve product selectivity and performance: A theoretical framework," Applied Energy, Elsevier, vol. 344(C).
    5. Hao Wang & Liusheng Xiao & Yingqi Liu & Xueping Zhang & Ruidong Zhou & Fangzheng Liu & Jinliang Yuan, 2023. "Performance and Thermal Stress Evaluation of Full-Scale SOEC Stack Using Multi-Physics Modeling Method," Energies, MDPI, vol. 16(23), pages 1-20, November.
    6. Shangzhe Yu & Shidong Zhang & Dominik Schäfer & Roland Peters & Felix Kunz & Rüdiger-A. Eichel, 2023. "Numerical Modeling and Simulation of the Solid Oxide Cell Stacks and Metal Interconnect Oxidation with OpenFOAM," Energies, MDPI, vol. 16(9), pages 1-22, April.
    7. Xia, Zhiping & Zhao, Dongqi & Li, Yuanzheng & Deng, Zhonghua & Kupecki, Jakub & Fu, Xiaowei & Li, Xi, 2023. "Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination," Applied Energy, Elsevier, vol. 332(C).
    8. Wehrle, Lukas & Schmider, Daniel & Dailly, Julian & Banerjee, Aayan & Deutschmann, Olaf, 2022. "Benchmarking solid oxide electrolysis cell-stacks for industrial Power-to-Methane systems via hierarchical multi-scale modelling," Applied Energy, Elsevier, vol. 317(C).
    9. Wang, Yuqing & Wehrle, Lukas & Banerjee, Aayan & Shi, Yixiang & Deutschmann, Olaf, 2021. "Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modeling," Renewable Energy, Elsevier, vol. 163(C), pages 78-87.
    10. Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
    11. Jalili, Mohammad & Ghazanfari Holagh, Shahriyar & Chitsaz, Ata & Song, Jian & Markides, Christos N., 2023. "Electrolyzer cell-methanation/Sabatier reactors integration for power-to-gas energy storage: Thermo-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 329(C).
    12. Lee, Dong-Young & Mehran, Muhammad Taqi & Kim, Jonghwan & Kim, Sangcho & Lee, Seung-Bok & Song, Rak-Hyun & Ko, Eun-Yong & Hong, Jong-Eun & Huh, Joo-Youl & Lim, Tak-Hyoung, 2020. "Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide coelectrolysis cell unit-bundle," Applied Energy, Elsevier, vol. 257(C).
    13. Guo, Meiting & Ru, Xiao & Yang, Lin & Ni, Meng & Lin, Zijing, 2022. "Effects of methane steam reforming on the mechanical stability of solid oxide fuel cell stack," Applied Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2025-:d:1382544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.