IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p804-d1335401.html
   My bibliography  Save this article

Carbon Dioxide, Nitrous Oxide, and Methane: What Types of Greenhouse Gases Are Most Affected by Green Investments and Renewable Energy Development?

Author

Listed:
  • Aleksy Kwilinski

    (Department of Management, Faculty of Applied Sciences, WSB University, 41-300 Dabrowa Gornicza, Poland
    The London Academy of Science and Business, London W1U 6TU, UK
    Academic and Research Institute of Business, Economics and Management, Sumy State University, 40-007 Sumy, Ukraine)

  • Olena Dobrovolska

    (Faculty of Economics, Dresden University of Applied Sciences (HTWD), 01-069 Dresden, Germany)

  • Tomasz Wołowiec

    (Institute of Public Administration and Business, Lubelska Akademia WSEI, 20-209 Lublin, Poland)

  • Wiktor Cwynar

    (Institute of Public Administration and Business, Lubelska Akademia WSEI, 20-209 Lublin, Poland)

  • Iryna Didenko

    (Academic and Research Institute of Business, Economics and Management, Sumy State University, 40-007 Sumy, Ukraine)

  • Artem Artyukhov

    (Faculty of Commerce, University of Economics in Bratislava, 852-35 Bratislava, Slovakia)

  • Oleksandr Dluhopolskyi

    (Institute of Public Administration and Business, Lubelska Akademia WSEI, 20-209 Lublin, Poland
    Faculty of Economics and Management, West Ukrainian National University, 46027 Ternopil, Ukraine)

Abstract

The article aims to analyze the impact of green investments and the development of renewable energy on greenhouse gas emissions based on 223 countries in 2011–2021. The information base is the International Renewable Energy Agency, Our World in Data, Climate Policy Initiative, and FTSE Russell. Correlation analysis was used to check the data multicollinearity, multivariate regression analysis with stepwise variable entry—to formalize functional relationships. All variables characterizing the dynamics of green investments and the development of alternative energy, the number of annual investments in off-grid renewable energy has the largest impact on the amount of CO 2 and N 2 O. Thus, an annual investment increase of USD 1 million leads to a CO 2 emission increase of 4.5 kt and an N 2 O emission increase of 0.272 kt. Simultaneously, the green economy’s market capitalization level has the largest impact on the amount of CH 4 . In this case, a capitalization increases of USD 1 trillion leads to a CH 4 emission increase of 129.53 kt. The dynamics of renewable energy development have a statistically significant effect on only one of the three studied greenhouse gases—CO 2 emissions. Here, 1 MW growth of an absolute increase in off-grid renewable energy capacity leads to a 1171.17 kt reduction of CO 2 emissions. Checking input data for lags confirmed a time lag of one year between the level of green investments and the level of greenhouse gas emissions. That is, the impact of green investments on the level of greenhouse gas emissions is delayed by one year. The results of regression models taking into account lags confirmed that an increase in the level of green investments has a positive effect on reducing the level of greenhouse gas emissions (an increase in off-grid renewable energy annual investments of USD 1 million leads to a decrease in CO 2 of 1.18 kt and N 2 O of 1.102 kt; the increase in green economy market capitalization of USD 1 trillion leads to a decrease in CH 4 emissions of 0.64 kt).

Suggested Citation

  • Aleksy Kwilinski & Olena Dobrovolska & Tomasz Wołowiec & Wiktor Cwynar & Iryna Didenko & Artem Artyukhov & Oleksandr Dluhopolskyi, 2024. "Carbon Dioxide, Nitrous Oxide, and Methane: What Types of Greenhouse Gases Are Most Affected by Green Investments and Renewable Energy Development?," Energies, MDPI, vol. 17(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:804-:d:1335401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Xiaobo & Mohsin, Muhammad & Zhang, Qiongxin, 2022. "Role of foreign direct investment and economic growth in renewable energy development," Renewable Energy, Elsevier, vol. 192(C), pages 828-837.
    2. Alina Vysochyna & Tetiana Vasylieva & Oleksandr Dluhopolskyi & Marcin Marczuk & Dymytrii Grytsyshen & Vitaliy Yunger & Agnieszka Sulimierska, 2023. "Impact of Coronavirus Disease COVID-19 on the Relationship between Healthcare Expenditures and Sustainable Economic Growth," IJERPH, MDPI, vol. 20(4), pages 1-18, February.
    3. Iryna Sotnyk & Tetiana Kurbatova & Oleksandr Kubatko & Olha Prokopenko & Gunnar Prause & Yevhen Kovalenko & Galyna Trypolska & Uliana Pysmenna, 2021. "Energy Security Assessment of Emerging Economies under Global and Local Challenges," Energies, MDPI, vol. 14(18), pages 1-20, September.
    4. Aleksandra Kuzior & Mariya Sira & Paulina Brozek, 2022. "Using Blockchain and Artificial Intelligence in Energy Management as a Tool to Achieve Energy Efficiency," Virtual Economics, The London Academy of Science and Business, vol. 5(3), pages 69-90, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chien-Chiang & Wang, Fuhao & Lou, Runchi & Wang, Keying, 2023. "How does green finance drive the decarbonization of the economy? Empirical evidence from China," Renewable Energy, Elsevier, vol. 204(C), pages 671-684.
    2. Iryna Sotnyk & Tetiana Kurbatova & Yaroslavna Romaniuk & Olha Prokopenko & Viktoriya Gonchar & Yuriy Sayenko & Gunnar Prause & Aleksander Sapiński, 2022. "Determining the Optimal Directions of Investment in Regional Renewable Energy Development," Energies, MDPI, vol. 15(10), pages 1-26, May.
    3. Yunpeng Sun & Ruoya Jia & Asif Razzaq & Qun Bao, 2023. "Drivers of China’s geographical renewable energy development: evidence from spatial association network structure approaches," Economic Change and Restructuring, Springer, vol. 56(6), pages 4115-4163, December.
    4. Mohamed Ahmed Suliman & Ahmed Hassan Abdou & Moatazbellah Farid Ibrahim & Dayal Ali Waheer Al-Khaldy & Ashraf Mohamed Anas & Wael Mohamed Mahmoud Alrefae & Wagih Salama, 2023. "Impact of Green Transformational Leadership on Employees’ Environmental Performance in the Hotel Industry Context: Does Green Work Engagement Matter?," Sustainability, MDPI, vol. 15(3), pages 1-18, February.
    5. Lee, Chien-Chiang & Wang, Fuhao & Chang, Yu-Fang, 2023. "Does green finance promote renewable energy? Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    6. Piotr Raźniak & Sławomir Dorocki & Tomasz Rachwał & Anna Winiarczyk-Raźniak, 2021. "The Role of the Energy Sector in the Command and Control Function of Cities in Conditions of Sustainability Transitions," Energies, MDPI, vol. 14(22), pages 1-14, November.
    7. Rafael Ninno Muniz & Carlos Tavares da Costa Júnior & William Gouvêa Buratto & Ademir Nied & Gabriel Villarrubia González, 2023. "The Sustainability Concept: A Review Focusing on Energy," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    8. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    9. Dariusz Sala & Iryna Bashynska & Olena Pavlova & Kostiantyn Pavlov & Nelia Chorna & Roman Chornyi, 2023. "Investment and Innovation Activity of Renewable Energy Sources in the Electric Power Industry in the South-Eastern Region of Ukraine," Energies, MDPI, vol. 16(5), pages 1-21, March.
    10. Kuang, Hewu & Liang, Yiyan & Zhao, Wenjia & Cai, Jiahong, 2023. "Impact of natural resources and technology on economic development and sustainable environment – Analysis of resources-energy-growth-environment linkages in BRICS," Resources Policy, Elsevier, vol. 85(PB).
    11. Robert Ulewicz & Dominika Siwiec & Andrzej Pacana, 2023. "Sustainable Vehicle Design Considering Quality Level and Life Cycle Environmental Assessment (LCA)," Energies, MDPI, vol. 16(24), pages 1-23, December.
    12. Li, Songran & Shao, Qinglong, 2022. "Greening the finance for climate mitigation: An ARDL–ECM approach," Renewable Energy, Elsevier, vol. 199(C), pages 1469-1481.
    13. Aleksandra Kuzior & Yaryna Samusevych & Serhiy Lyeonov & Dariusz Krawczyk & Dymytrii Grytsyshen, 2023. "Applying Energy Taxes to Promote a Clean, Sustainable and Secure Energy System: Finding the Preferable Approaches," Energies, MDPI, vol. 16(10), pages 1-26, May.
    14. Viktor Koval & Oksana Borodina & Iryna Lomachynska & Piotr Olczak & Anzor Mumladze & Dominika Matuszewska, 2022. "Model Analysis of Eco-Innovation for National Decarbonisation Transition in Integrated European Energy System," Energies, MDPI, vol. 15(9), pages 1-19, May.
    15. Lee, Chien-Chiang & Ho, Shan-Ju, 2022. "Impacts of export diversification on energy intensity, renewable energy, and waste energy in 121 countries: Do environmental regulations matter?," Renewable Energy, Elsevier, vol. 199(C), pages 1510-1522.
    16. Man Zhou & Uliana Pysmenna & Oleksandra Kubatko & Volodymyr Voloshchuk & Iryna Sotnyk & Galyna Trypolska, 2023. "Support for Household Prosumers in the Early Stages of Power Market Decentralization in Ukraine," Energies, MDPI, vol. 16(17), pages 1-15, September.
    17. Hashmi, Shabir Mohsin & Syed, Qasim Raza & Inglesi-Lotz, Roula, 2022. "Monetary and energy policy interlinkages: The case of renewable energy in the US," Renewable Energy, Elsevier, vol. 201(P1), pages 141-147.
    18. Cheng-Hong Yang & Tshimologo Molefyane & Yu-Da Lin, 2023. "The Forecasting of a Leading Country’s Government Expenditure Using a Recurrent Neural Network with a Gated Recurrent Unit," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    19. Yu, Mengyan & Umair, Muhammad & Oskenbayev, Yessengali & Karabayeva, Zhаnsaya, 2023. "Exploring the nexus between monetary uncertainty and volatility in global crude oil: A contemporary approach of regime-switching," Resources Policy, Elsevier, vol. 85(PB).
    20. Dariusz Sala & Kostiantyn Pavlov & Olena Pavlova & Anton Demchuk & Liubomur Matiichuk & Dariusz Cichoń, 2023. "Determining of the Bankrupt Contingency as the Level Estimation Method of Western Ukraine Gas Distribution Enterprises’ Competence Capacity," Energies, MDPI, vol. 16(4), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:804-:d:1335401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.