IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p788-d1334630.html
   My bibliography  Save this article

Techno-Economic Planning of a Fully Renewable Energy-Based Autonomous Microgrid with Both Single and Hybrid Energy Storage Systems

Author

Listed:
  • Mobin Naderi

    (Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UK)

  • Diane Palmer

    (Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UK)

  • Matthew J. Smith

    (Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UK)

  • Erica E. F. Ballantyne

    (Sheffield University Management School, University of Sheffield, Sheffield S10 2TN, UK)

  • David A. Stone

    (Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UK)

  • Martin P. Foster

    (Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UK)

  • Daniel T. Gladwin

    (Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S10 2TN, UK)

  • Amirhossein Khazali

    (School of Engineering, University of Southampton, Southampton SO17 1BJ, UK)

  • Yazan Al-Wreikat

    (School of Engineering, University of Southampton, Southampton SO17 1BJ, UK)

  • Andrew Cruden

    (School of Engineering, University of Southampton, Southampton SO17 1BJ, UK)

  • Ewan Fraser

    (School of Engineering, University of Southampton, Southampton SO17 1BJ, UK)

Abstract

This paper presents both the techno-economic planning and a comprehensive sensitivity analysis of an off-grid fully renewable energy-based microgrid (MG) intended to be used as an electric vehicle (EV) charging station. Different possible plans are compared using technical, economic, and techno-economic characteristics for different numbers of wind turbines and solar panels, and both single and hybrid energy storage systems (ESSs) composed of new Li-ion, second-life Li-ion, and new lead–acid batteries. A modified cost of energy (MCOE) index including EVs’ unmet energy penalties and present values of ESSs is proposed, which can combine both important technical and economic criteria together to enable a techno-economic decision to be made. Bi-objective and multi-objective decision-making are provided using the MCOE, total met load, and total costs in which different plans are introduced as the best plans from different aspects. The number of wind turbines and solar panels required for the case study is obtained with respect to the ESS capacity using weather data and assuming EV demand according to the EV population data, which can be generalized to other case studies according to the presented modelling. Through studies on hybrid-ESS-supported MGs, the impact of two different global energy management systems (EMSs) on techno-economic characteristics is investigated, including a power-sharing-based and a priority-based EMS. Single Li-ion battery ESSs in both forms, new and second-life, show the best plans according to the MCOE and total met load; however, the second-life Li-ion shows lower total costs. The hybrid ESSs of both the new and second-life Li-ion battery ESSs show the advantages of both the new and second-life types, i.e., deeper depths of discharge and cheaper plans.

Suggested Citation

  • Mobin Naderi & Diane Palmer & Matthew J. Smith & Erica E. F. Ballantyne & David A. Stone & Martin P. Foster & Daniel T. Gladwin & Amirhossein Khazali & Yazan Al-Wreikat & Andrew Cruden & Ewan Fraser, 2024. "Techno-Economic Planning of a Fully Renewable Energy-Based Autonomous Microgrid with Both Single and Hybrid Energy Storage Systems," Energies, MDPI, vol. 17(4), pages 1-31, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:788-:d:1334630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mathews, Ian & Xu, Bolun & He, Wei & Barreto, Vanessa & Buonassisi, Tonio & Peters, Ian Marius, 2020. "Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging," Applied Energy, Elsevier, vol. 269(C).
    2. Zhang, Lei & Hu, Xiaosong & Wang, Zhenpo & Ruan, Jiageng & Ma, Chengbin & Song, Ziyou & Dorrell, David G. & Pecht, Michael G., 2021. "Hybrid electrochemical energy storage systems: An overview for smart grid and electrified vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    2. Binghong Han & Jonathon R. Harding & Johanna K. S. Goodman & Zhuhua Cai & Quinn C. Horn, 2022. "End-of-Charge Temperature Rise and State-of-Health Evaluation of Aged Lithium-Ion Battery," Energies, MDPI, vol. 16(1), pages 1-17, December.
    3. Francesco Lo Franco & Antonio Morandi & Pietro Raboni & Gabriele Grandi, 2021. "Efficiency Comparison of DC and AC Coupling Solutions for Large-Scale PV+BESS Power Plants," Energies, MDPI, vol. 14(16), pages 1-22, August.
    4. Hu, Lin & Tian, Qingtao & Zou, Changfu & Huang, Jing & Ye, Yao & Wu, Xianhui, 2022. "A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Aree Wangsupphaphol & Surachai Chaitusaney & Mohamed Salem, 2023. "A Techno-Economic Assessment of a Second-Life Battery and Photovoltaics Hybrid Power Source for Sustainable Electric Vehicle Home Charging," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    6. Sai Vinayak Ganesh & Matilde D’Arpino, 2023. "Critical Comparison of Li-Ion Aging Models for Second Life Battery Applications," Energies, MDPI, vol. 16(7), pages 1-23, March.
    7. Lin, Haiyang & Bian, Caiyun & Wang, Yu & Li, Hailong & Sun, Qie & Wallin, Fredrik, 2022. "Optimal planning of intra-city public charging stations," Energy, Elsevier, vol. 238(PC).
    8. Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
    9. Antonio Venancio M. L. Filho & Andrea S. M. Vasconcelos & Washington de A. S. Junior & Nicolau K. L. Dantas & Ayrlw Maynyson C. Arcanjo & Amanda C. M. Souza & Amanda L. Fernandes & Kaihang Zhang & Kun, 2023. "Impact Analysis and Energy Quality of Photovoltaic, Electric Vehicle and BESS Lead-Carbon Recharge Station in Brazil," Energies, MDPI, vol. 16(5), pages 1-18, March.
    10. Md. Mahamudul Hasan & Boris Berseneff & Tim Meulenbroeks & Igor Cantero & Sajib Chakraborty & Thomas Geury & Omar Hegazy, 2022. "A Multi-Objective Co-Design Optimization Framework for Grid-Connected Hybrid Battery Energy Storage Systems: Optimal Sizing and Selection of Technology," Energies, MDPI, vol. 15(15), pages 1-21, July.
    11. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    12. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Institute of Transportation Studies, Working Paper Series qt2ws2c6jw, Institute of Transportation Studies, UC Davis.
    14. Steckel, Tobiah & Kendall, Alissa & Ambrose, Hanjiro, 2021. "Applying levelized cost of storage methodology to utility-scale second-life lithium-ion battery energy storage systems," Applied Energy, Elsevier, vol. 300(C).
    15. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
    16. Mathieu, Romain & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2021. "Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures," Applied Energy, Elsevier, vol. 283(C).
    17. Lukáš Janota & Tomáš Králík & Jaroslav Knápek, 2020. "Second Life Batteries Used in Energy Storage for Frequency Containment Reserve Service," Energies, MDPI, vol. 13(23), pages 1-36, December.
    18. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Horesh, Noah & Quinn, Casey & Wang, Hongjie & Zane, Regan & Ferry, Mike & Tong, Shijie & Quinn, Jason C., 2021. "Driving to the future of energy storage: Techno-economic analysis of a novel method to recondition second life electric vehicle batteries," Applied Energy, Elsevier, vol. 295(C).
    20. Weng, Jingwen & Xiao, Changren & Yang, Xiaoqing & Ouyang, Dongxu & Chen, Mingyi & Zhang, Guoqing & Lee Waiming, Eric & Kit Yuen, Richard Kwowk & Wang, Jian, 2022. "An energy-saving battery thermal management strategy coupling tubular phase-change-material with dynamic liquid cooling under different ambient temperatures," Renewable Energy, Elsevier, vol. 195(C), pages 918-930.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:788-:d:1334630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.