IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5355-d870209.html
   My bibliography  Save this article

A Multi-Objective Co-Design Optimization Framework for Grid-Connected Hybrid Battery Energy Storage Systems: Optimal Sizing and Selection of Technology

Author

Listed:
  • Md. Mahamudul Hasan

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Boris Berseneff

    (Cea-Liten, Universités Grenoble Alpes, 38000 Grenoble, France)

  • Tim Meulenbroeks

    (Department of Powertrains, TNO, 5700 AT Helmond, The Netherlands)

  • Igor Cantero

    (Cegasa Energia S.L.U., 01015 Vitoria, Spain)

  • Sajib Chakraborty

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Thomas Geury

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Omar Hegazy

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

Abstract

This paper develops a multi-objective co-design optimization framework for the optimal sizing and selection of battery and power electronics in hybrid battery energy storage systems (HBESSs) connected to the grid. The co-design optimization approach is crucial for such a complex system with coupled subcomponents. To this end, a nondominated sorting genetic algorithm (NSGA-II) is used for optimal sizing and selection of technologies in the design of the HBESS, considering design parameters such as cost, efficiency, and lifetime. The interoperable framework is applied considering three first-life battery cells and one second-life battery cell for forming two independent battery packs as a hybrid battery unit and considers two power conversion architectures for interfacing the hybrid battery unit to the grid with different power stages and levels of modularity. Finally, the globally best HBESS system obtained as the output of the framework is made up of LTO first-life and LFP second-life cells and enables a total cost of ownership (TCO) reduction of 29.6% compared to the baseline.

Suggested Citation

  • Md. Mahamudul Hasan & Boris Berseneff & Tim Meulenbroeks & Igor Cantero & Sajib Chakraborty & Thomas Geury & Omar Hegazy, 2022. "A Multi-Objective Co-Design Optimization Framework for Grid-Connected Hybrid Battery Energy Storage Systems: Optimal Sizing and Selection of Technology," Energies, MDPI, vol. 15(15), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5355-:d:870209
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirotaka Takano & Ryosuke Hayashi & Hiroshi Asano & Tadahiro Goda, 2021. "Optimal Sizing of Battery Energy Storage Systems Considering Cooperative Operation with Microgrid Components," Energies, MDPI, vol. 14(21), pages 1-13, November.
    2. McIlwaine, Neil & Foley, Aoife M. & Morrow, D. John & Al Kez, Dlzar & Zhang, Chongyu & Lu, Xi & Best, Robert J., 2021. "A state-of-the-art techno-economic review of distributed and embedded energy storage for energy systems," Energy, Elsevier, vol. 229(C).
    3. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    4. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    5. Zhang, Lei & Hu, Xiaosong & Wang, Zhenpo & Ruan, Jiageng & Ma, Chengbin & Song, Ziyou & Dorrell, David G. & Pecht, Michael G., 2021. "Hybrid electrochemical energy storage systems: An overview for smart grid and electrified vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Bernhard Faessler, 2021. "Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review," Energies, MDPI, vol. 14(8), pages 1-19, April.
    7. Nan Zhou & Nian Liu & Jianhua Zhang & Jinyong Lei, 2016. "Multi-Objective Optimal Sizing for Battery Storage of PV-Based Microgrid with Demand Response," Energies, MDPI, vol. 9(8), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Kafetzis, A. & Ziogou, C. & Panopoulos, K.D. & Papadopoulou, S. & Seferlis, P. & Voutetakis, S., 2020. "Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Arsalis, Alexandros & Papanastasiou, Panos & Georghiou, George E., 2022. "A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications," Renewable Energy, Elsevier, vol. 191(C), pages 943-960.
    4. Abdul Mannan Rauf & Mohamed Abdel-Monem & Thomas Geury & Omar Hegazy, 2023. "A Review on Multilevel Converters for Efficient Integration of Battery Systems in Stationary Applications," Energies, MDPI, vol. 16(10), pages 1-38, May.
    5. Ioannis Mexis & Grazia Todeschini, 2020. "Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications," Energies, MDPI, vol. 13(14), pages 1-31, July.
    6. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    7. Nian Liu & Cheng Wang & Minyang Cheng & Jie Wang, 2016. "A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids," Energies, MDPI, vol. 9(12), pages 1-18, December.
    8. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    9. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    10. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    12. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    13. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin, 2022. "The role of modified diesel generation within isolated power systems," Energy, Elsevier, vol. 240(C).
    14. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    16. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    17. Trieste, S. & Hmam, S. & Olivier, J.-C. & Bourguet, S. & Loron, L., 2015. "Techno-economic optimization of a supercapacitor-based energy storage unit chain: Application on the first quick charge plug-in ferry," Applied Energy, Elsevier, vol. 153(C), pages 3-14.
    18. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.
    19. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    20. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5355-:d:870209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.