IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p402-d1318559.html
   My bibliography  Save this article

Fuzzy Approach for Managing Renewable Energy Flows for DC-Microgrid with Composite PV-WT Generators and Energy Storage System

Author

Listed:
  • Mario Versaci

    (DICEAM Department, “Mediterranea” University, Via Zehender, I-89122 Reggio Calabria, Italy)

  • Fabio La Foresta

    (DICEAM Department, “Mediterranea” University, Via Zehender, I-89122 Reggio Calabria, Italy)

Abstract

Recently, the implementation of software/hardware systems based on advanced artificial intelligence techniques for continuous monitoring of the electrical parameters of intelligent networks aimed at managing and controlling energy consumption has been of great interest. The contribution of this paper, starting from a recently studied DC-MG, fits into this context by proposing an intuitionistic fuzzy Takagi–Sugeno approach optimized for the energy management of isolated direct current microgrid systems consisting of a photovoltaic and a wind source. Furthermore, a lead-acid battery guarantees the stability of the DC bus while a hydrogen cell ensures the reliability of the system by avoiding blackout conditions and increasing interaction with the loads. The fuzzy rule bank, initially built using the expert’s knowledge, is optimized with the aforementioned procedure, maximizing external energy and minimizing consumption. The complete scheme, modeled using MatLab/Simulink, highlighted performance comparable to fuzzy Takagi–Sugeno systems optimized using a hybrid approach based on particle swarm optimization (to structure the antecedents of the rules) and minimum batch squares (to optimize the output).

Suggested Citation

  • Mario Versaci & Fabio La Foresta, 2024. "Fuzzy Approach for Managing Renewable Energy Flows for DC-Microgrid with Composite PV-WT Generators and Energy Storage System," Energies, MDPI, vol. 17(2), pages 1-31, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:402-:d:1318559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmoud F. Elmorshedy & Umashankar Subramaniam & Jagabar Sathik Mohamed Ali & Dhafer Almakhles, 2023. "Energy Management of Hybrid DC Microgrid with Different Levels of DC Bus Voltage for Various Load Types," Energies, MDPI, vol. 16(14), pages 1-32, July.
    2. Caparrós Mancera, Julio José & Saenz, Jaime Luis & López, Eduardo & Andújar, José Manuel & Segura Manzano, Francisca & Vivas, Francisco José & Isorna, Fernando, 2022. "Experimental analysis of the effects of supercapacitor banks in a renewable DC microgrid," Applied Energy, Elsevier, vol. 308(C).
    3. Uzair, Muhammad & Li, Li & Eskandari, Mohsen & Hossain, Jahangir & Zhu, Jian Guo, 2023. "Challenges, advances and future trends in AC microgrid protection: With a focus on intelligent learning methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    4. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    5. Areeba Naseem & Kifayat Ullah & Maria Akram & Darko Božanić & Goran Ćirović, 2022. "Assessment of Smart Grid Systems for Electricity Using Power Maclaurin Symmetric Mean Operators Based on T-Spherical Fuzzy Information," Energies, MDPI, vol. 15(21), pages 1-25, October.
    6. Carmelo Filippo Munafò & Annunziata Palumbo & Mario Versaci, 2023. "An Inhomogeneous Model for Laser Welding of Industrial Interest," Mathematics, MDPI, vol. 11(15), pages 1-25, July.
    7. Gong, Xun & Wang, Xiaozhe, 2023. "A novel Koopman-inspired method for the secondary control of microgrids with grid-forming and grid-following sources," Applied Energy, Elsevier, vol. 333(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiye Lu & Lishu Wang & Panbao Wang, 2023. "Review of Voltage Control Strategies for DC Microgrids," Energies, MDPI, vol. 16(17), pages 1-19, August.
    2. Gong, Xun & Wang, Xiaozhe & Cao, Bo, 2023. "On data-driven modeling and control in modern power grids stability: Survey and perspective," Applied Energy, Elsevier, vol. 350(C).
    3. Mohammed M. Alhaider & Ziad M. Ali & Mostafa H. Mostafa & Shady H. E. Abdel Aleem, 2023. "Economic Viability of NaS Batteries for Optimal Microgrid Operation and Hosting Capacity Enhancement under Uncertain Conditions," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    4. Maria Akram & Kifayat Ullah & Goran Ćirović & Dragan Pamucar, 2023. "Algorithm for Energy Resource Selection Using Priority Degree-Based Aggregation Operators with Generalized Orthopair Fuzzy Information and Aczel–Alsina Aggregation Operators," Energies, MDPI, vol. 16(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:402-:d:1318559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.