IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p312-d1315187.html
   My bibliography  Save this article

A Life Cycle Analysis of a Polyester–Wool Blended Fabric and Associated Carbon Emissions in the Textile Industry

Author

Listed:
  • Pırıl Tekin

    (Department of Industrial Engineering, Adana Alparslan Türkeş Science and Technology University, Sarıçam, Adana 01250, Turkey)

  • Hakan Alıcı

    (Department of Electrical and Electronics Engineering, Adana Alparslan Türkeş Science and Technology University, Sarıçam, Adana 01250, Turkey
    Kıvanç Textile Industry and Commerce Incorporated Company, Seyhan, Adana 01040, Turkey)

  • Tuğçe Demirdelen

    (Department of Electrical and Electronics Engineering, Adana Alparslan Türkeş Science and Technology University, Sarıçam, Adana 01250, Turkey)

Abstract

The effect of industrialization and technological developments and the rate of population growth have begun to disrupt the ecological balance in the world. A large share of the deterioration of this balance is due to the rapidly increasing energy demands of people. Fossil fuels and renewable energy sources are used to obtain the energy that is needed by human beings. Most of the world’s energy needs are met by fossil fuels such as coal, oil, and natural gas. These resources, which we call fossil fuels, cause many parallel environmental problems, such as global warming, climate change, and carbon emissions, for the world and nature. The most affected by all these experiences, of course, is the entire production sector, which is dependent on energy. However, textile and apparel, which is a pioneer in taking steps towards harmonization with the Green Agreement, is one of the sectors that started the transition to green energy within the scope of the European Union and brands’ net-zero targets. Within the scope of the Green Agreement, Turkey has participated and started to work for a 70% carbon reduction, which is the target for 2030, and carbon neutrality, which is the target for 2050. Therefore, within the scope of these targets, the textile sector of Çukurova Region, which has the highest export rate in Turkey, was chosen. Within the scope of this study, carbon emission, which is one of the global problems, was examined within the framework of the ISO 14067-ISO Product Based Carbon Footprint (CF) standard by examining the production of a textile company, and the results were analyzed in detail. The main innovation of this article is to follow all stages of the fabric called Tricia, which is the most produced product in the textile industry, from its entry as fiber to its exit as fabric in the factory, and to calculate and analyze the amount of carbon that is released into nature. The dynamic and experimental results showed that it was determined that 6.00 tons of carbon dioxide carbon were released in the time it took for the fabric to go to the sewing room as a fabric.

Suggested Citation

  • Pırıl Tekin & Hakan Alıcı & Tuğçe Demirdelen, 2024. "A Life Cycle Analysis of a Polyester–Wool Blended Fabric and Associated Carbon Emissions in the Textile Industry," Energies, MDPI, vol. 17(2), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:312-:d:1315187
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Beijia & Zhao, Juan & Geng, Yong & Tian, Yihui & Jiang, Ping, 2017. "Energy-related GHG emissions of the textile industry in China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 69-77.
    2. Si-Yu Peng & Jing-Yu Liu & Yong Geng, 2022. "Assessing Strategies For Reducing The Carbon Footprint Of Textile Products In China Under The Shared Socioeconomic Pathways Framework," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 1-20, February.
    3. Wen-Hsien Tsai, 2023. "Balancing Profit and Environmental Sustainability with Carbon Emissions Management and Industry 4.0 Technologies," Energies, MDPI, vol. 16(17), pages 1-30, August.
    4. Slimane Smouh & Fatima Zohra Gargab & Badr Ouhammou & Abdel Ali Mana & Rachid Saadani & Abdelmajid Jamil, 2022. "A New Approach to Energy Transition in Morocco for Low Carbon and Sustainable Industry (Case of Textile Sector)," Energies, MDPI, vol. 15(10), pages 1-26, May.
    5. Pramodit Adhikari & Hussam N. Mahmoud & Bruce R. Ellingwood, 2021. "Life-cycle cost and sustainability analysis of light-frame wood residential communities exposed to tornados," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 523-544, October.
    6. Lin, Boqiang & Moubarak, Mohamed, 2014. "Mitigation potential of carbon dioxide emissions in the Chinese textile industry," Applied Energy, Elsevier, vol. 113(C), pages 781-787.
    7. Bülent Sarı & Farhad Zarifi & Muhammed Alhasan & Hakan Güney & Selman Türkeş & Serdal Sırlıbaş & Deniz Civan Yiğit & Güray Kılınççeker & Beşir Şahin & Olcayto Keskinkan, 2023. "Determining the Contributions in a Denim Fabric Production for Sustainable Development Goals: Life Cycle Assessment and Material Input Approaches," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    2. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    3. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
    4. Yang, Yuan & Cai, Wenjia & Wang, Can, 2014. "Industrial CO2 intensity, indigenous innovation and R&D spillovers in China’s provinces," Applied Energy, Elsevier, vol. 131(C), pages 117-127.
    5. Liu, Qilin & Zhang, Wenhua & Yao, Mingtao & Yuan, Jiahai, 2017. "Carbon emissions performance regulation for China’s top generation groups by 2020: Too challenging to realize?," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 326-334.
    6. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    7. Yu, Shiwei & Agbemabiese, Lawrence & Zhang, Junjie, 2016. "Estimating the carbon abatement potential of economic sectors in China," Applied Energy, Elsevier, vol. 165(C), pages 107-118.
    8. Grigorios L. Kyriakopoulos & Dalia Streimikiene & Tomas Baležentis, 2022. "Addressing Challenges of Low-Carbon Energy Transition," Energies, MDPI, vol. 15(15), pages 1-7, August.
    9. Hao Xiao & Shuquan Li & Julien Chevallier & Bangzhu Zhu, 2017. "Electricity-Savings Pressure and Electricity-Savings Potential among China?s Inter-Provincial Manufacturing Sectors," Working Papers 2017-006, Department of Research, Ipag Business School.
    10. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    11. Li, Shupeng & Niu, Liping & Yue, Qiang & Zhang, Tingan, 2022. "Trajectory, driving forces, and mitigation potential of energy-related greenhouse gas (GHG) emissions in China's primary aluminum industry," Energy, Elsevier, vol. 239(PB).
    12. Marcin Olkiewicz & Anna Olkiewicz & Radosław Wolniak & Adam Wyszomirski, 2021. "Effects of Pro-Ecological Investments on an Example of the Heating Industry—Case Study," Energies, MDPI, vol. 14(18), pages 1-24, September.
    13. Jing Lin & Boqiang Lin, 2016. "How Much CO 2 Emissions Can Be Reduced in China’s Heating Industry," Sustainability, MDPI, vol. 8(7), pages 1-16, July.
    14. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    15. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
    16. Jisoo Oh & Bongju Jeong, 2014. "Profit Analysis and Supply Chain Planning Model for Closed-Loop Supply Chain in Fashion Industry," Sustainability, MDPI, vol. 6(12), pages 1-30, December.
    17. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    18. Haseeb, Muhammad & Haouas, Ilham & Nasih, Mohammad & Mihardjo, Leonardus WW. & Jermsittiparsert, Kittisak, 2020. "Asymmetric impact of textile and clothing manufacturing on carbon-dioxide emissions: Evidence from top Asian economies," Energy, Elsevier, vol. 196(C).
    19. Lin, Boqiang & Bai, Rui, 2020. "Dynamic energy performance evaluation of Chinese textile industry," Energy, Elsevier, vol. 199(C).
    20. Chen, B. & Yang, Q. & Zhou, Sili & Li, J.S. & Chen, G.Q., 2017. "Urban economy's carbon flow through external trade: Spatial-temporal evolution for Macao," Energy Policy, Elsevier, vol. 110(C), pages 69-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:312-:d:1315187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.