IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5878-d1527643.html
   My bibliography  Save this article

Electrochemical Storage and Flexibility in Transfer Capacities: Strategies and Uses for Vulnerable Power Grids

Author

Listed:
  • Gustavo Adolfo Gómez-Ramírez

    (Escuela de Ingeniería Electromecánica, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica)

  • Luis García-Santander

    (Departamento de Ingeniería Eléctrica, Universidad de Concepción, Concepción 4030000, Chile)

  • José Rodrigo Rojas-Morales

    (Sede Regional Chorotega, Campus Liberia, Universidad Nacional, Liberia 50101, Costa Rica)

  • Markel Lazkano-Zubiaga

    (Departamento de Tecnologia Electrónica, Universidad del Pais Vasco—Euskal Herriko Unibertsitatea, 20500 Eibar, Spain)

  • Carlos Meza

    (Department of Electrical, Mechanical and Industrial Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany)

Abstract

The integration of renewable energy sources into electrical power systems presents enormous challenges in technical terms, especially with energy storage. Battery electrochemical storage systems (BESSs) are becoming a crucial solution for reducing the intermittency of renewable energy supply and enhance the stability of power networks. Nonetheless, its extensive implementation confronts constraints, including expense, life expectancy, and energy efficiency. Simultaneously, these technologies present prospects for improved energy management, increase the hosting capacity of renewable energy, and diminish reliance on fossil fuels. This paper investigates the obstacles of integrating electrochemical storage into electrical power systems, explores solutions to use its promise for creating more resilient and sustainable grids, and presents a method for the size estimation and strategic allocation of electrochemical energy storage systems (EESSs). The aim is to improve grid voltage profiles, manage demand response, increase the adoption of renewable energy resources, enhance power transfer among various areas, and subsequently improve the stability of a power system during large disturbances. The methodology utilizes a multi-stage optimization process based on economic considerations supported by dynamic simulation. This methodology was tested employing a validated dynamic model of the Interconnected Electrical System of the Central American Countries (SIEPAC). The system experienced multiple significant blackouts in recent years, primarily due to the increasing amount of renewable energy generation without adequate inertial support and limited power transfer capabilities among countries. Based on the results of using the technique, EESSs can effectively lower the risk of instability caused by an imbalance between power generation and demand during extreme situations, as seen in past event reports. Based on economical constraints, it has been determined that the cost of installing EESSs for the SIEPAC, which amounts to 1200 MWh/200 MW, is 140.91 USD/MWh.

Suggested Citation

  • Gustavo Adolfo Gómez-Ramírez & Luis García-Santander & José Rodrigo Rojas-Morales & Markel Lazkano-Zubiaga & Carlos Meza, 2024. "Electrochemical Storage and Flexibility in Transfer Capacities: Strategies and Uses for Vulnerable Power Grids," Energies, MDPI, vol. 17(23), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5878-:d:1527643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hlalele, Thabo G. & Zhang, Jiangfeng & Naidoo, Raj M. & Bansal, Ramesh C., 2021. "Multi-objective economic dispatch with residential demand response programme under renewable obligation," Energy, Elsevier, vol. 218(C).
    2. Olabi, A.G. & Wilberforce, Tabbi & Sayed, Enas Taha & Abo-Khalil, Ahmed G. & Maghrabie, Hussein M. & Elsaid, Khaled & Abdelkareem, Mohammad Ali, 2022. "Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission," Energy, Elsevier, vol. 254(PA).
    3. Xiaoliang Xu & Rong Huang & Han Cai, 2024. "The Impacts on Regional Development and “Resource Curse” by Energy Substitution Policy: Verification from China," Energies, MDPI, vol. 17(17), pages 1-16, September.
    4. Gan, Wei & Ai, Xiaomeng & Fang, Jiakun & Yan, Mingyu & Yao, Wei & Zuo, Wenping & Wen, Jinyu, 2019. "Security constrained co-planning of transmission expansion and energy storage," Applied Energy, Elsevier, vol. 239(C), pages 383-394.
    5. Mohamad, Farihan & Teh, Jiashen & Lai, Ching-Ming, 2021. "Optimum allocation of battery energy storage systems for power grid enhanced with solar energy," Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    2. Gao, Xinjia & Wu, Xiaogang & Xia, Yinlong & Li, Yalun, 2024. "Life extension of a multi-unit energy storage system by optimizing the power distribution based on the degradation ratio," Energy, Elsevier, vol. 286(C).
    3. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    4. Liu, Zhi-Feng & Zhao, Shi-Xiang & Luo, Xing-Fu & Huang, Ya-He & Gu, Rui-Zheng & Li, Ji-Xiang & Li, Ling-Ling, 2025. "Two-layer energy dispatching and collaborative optimization of regional integrated energy system considering stakeholders game and flexible load management," Applied Energy, Elsevier, vol. 379(C).
    5. Sun, Shulei & Ma, Chunyu & Wang, Xiyu & Yang, Ye & Mei, Jun, 2024. "Design and optimisation of a novel serpentine flow channel with branch structure," Energy, Elsevier, vol. 293(C).
    6. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    7. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    8. Liu, Zhi-Feng & Li, Ling-Ling & Liu, Yu-Wei & Liu, Jia-Qi & Li, Heng-Yi & Shen, Qiang, 2021. "Dynamic economic emission dispatch considering renewable energy generation: A novel multi-objective optimization approach," Energy, Elsevier, vol. 235(C).
    9. Zhao, Bo & Ren, Junzhi & Chen, Jian & Lin, Da & Qin, Ruwen, 2020. "Tri-level robust planning-operation co-optimization of distributed energy storage in distribution networks with high PV penetration," Applied Energy, Elsevier, vol. 279(C).
    10. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    11. Ahmed G. Abo-Khalil & Mohammad Alobaid, 2023. "A Guide to the Integration and Utilization of Energy Storage Systems with a Focus on Demand Resource Management and Power Quality Enhancement," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    12. Huang, Mengdi & Chang, Jianxia & Guo, Aijun & Zhao, Mingzhe & Ye, Xiangmin & Lei, Kaixuan & Peng, Zhiwen & Wang, Yimin, 2023. "Cascade hydropower stations optimal dispatch considering flexible margin in renewable energy power system," Energy, Elsevier, vol. 285(C).
    13. Savelli, Iacopo & De Paola, Antonio & Li, Furong, 2020. "Ex-ante dynamic network tariffs for transmission cost recovery," Applied Energy, Elsevier, vol. 258(C).
    14. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Halima Alnaqbi & Oussama El-Kadri & Mohammad Ali Abdelkareem & Sameer Al-Asheh, 2022. "Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells," Energies, MDPI, vol. 15(21), pages 1-25, November.
    16. Shahrukh Khan & Arshad Mahmood & Mohammad Zaid & Mohd Tariq & Chang-Hua Lin & Javed Ahmad & Basem Alamri & Ahmad Alahmadi, 2021. "A High Step-up DC-DC Converter Based on the Voltage Lift Technique for Renewable Energy Applications," Sustainability, MDPI, vol. 13(19), pages 1-24, October.
    17. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    18. Annala, Salla & Ruggiero, Salvatore & Kangas, Hanna-Liisa & Honkapuro, Samuli & Ohrling, Tiina, 2022. "Impact of home market on business development and internationalization of demand response firms," Energy, Elsevier, vol. 242(C).
    19. Lin, Yu-Hsiu & Shen, Ting-Yu, 2023. "Novel cell screening and prognosing based on neurocomputing-based multiday-ahead time-series forecasting for predictive maintenance of battery modules in frequency regulation-energy storage systems," Applied Energy, Elsevier, vol. 351(C).
    20. Kuznetsov, G.V. & Kravchenko, E.V. & Pribaturin, N.A., 2024. "Influence of the air gaps between cells and the case of the storage battery on its representative temperatures," Energy, Elsevier, vol. 308(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5878-:d:1527643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.