IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5601-d1517443.html
   My bibliography  Save this article

Intelligent Carbon Metering and Settlement Method of New Power System Based on Blockchain Technology

Author

Listed:
  • Ruxin Wen

    (Marketing Service Center of Heilongjiang Electric Power Co., Ltd., State Grid, Harbin 150090, China)

  • Wen Tian

    (Marketing Service Center of Heilongjiang Electric Power Co., Ltd., State Grid, Harbin 150090, China)

  • Huiying Liu

    (Marketing Service Center of Heilongjiang Electric Power Co., Ltd., State Grid, Harbin 150090, China)

  • Wenjuan Lin

    (Marketing Service Center of Heilongjiang Electric Power Co., Ltd., State Grid, Harbin 150090, China)

  • Xizhong Zhou

    (Yineng Charging Technology (Shenzhen) Co., Ltd., Shenzhen 518066, China)

  • Xuerong Li

    (Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

Blockchain technology is an important technical basis for ensuring carbon trading and plays a fundamental role in maintaining fairness in the carbon trading market. This paper proposes a carbon emission metering and settlement method and a system based on blockchain technology which creates the digital identity of electric meters and stores it in the blockchain. Verifiable credentials are generated based on the digital identity, energy data, and time stamp. The system records the energy data read by the verified meter to the blockchain cloud platform for carbon emission statistics. In the payment and settlement stage, through application of the blockchain and its combination with a digital payment wallet, the regional energy network consumption settlement value is generated according to the regional power supply and electricity consumption, and the settlement value is used as the benchmark to measure the carbon emissions in the region. Through the data analysis of practical application cases in an industrial park in China, this study concludes that the carbon emission statistical settlement method based on blockchain technology solves the problems of untrustworthiness, unreliability, and inconsistency in the statistical and settlement methods during the statistical settlement of electric energy statistics and energy consumption carbon emissions.

Suggested Citation

  • Ruxin Wen & Wen Tian & Huiying Liu & Wenjuan Lin & Xizhong Zhou & Xuerong Li, 2024. "Intelligent Carbon Metering and Settlement Method of New Power System Based on Blockchain Technology," Energies, MDPI, vol. 17(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5601-:d:1517443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5601/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5601/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meijing Liu & Changqi Liu & Hao Xie & Zhonghui Zhao & Chong Zhu & Yangang Lu & Changsheng Bu, 2023. "Analysis of the Impact of Photovoltaic Curtain Walls Replacing Glass Curtain Walls on the Whole Life Cycle Carbon Emission of Public Buildings Based on BIM Modeling Study," Energies, MDPI, vol. 16(20), pages 1-21, October.
    2. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    3. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    4. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    5. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    6. Wang, Zhaohua & Liu, Qiang & Zhang, Bin, 2022. "What kinds of building energy-saving retrofit projects should be preferred? Efficiency evaluation with three-stage data envelopment analysis (DEA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Liu, Xiuli & Guo, Pibin & Yue, Xiaohang & Qi, Xiaoyan & Guo, Shufeng & Zhou, Xijun, 2021. "Measuring metabolic efficiency of the Beijing–Tianjin–Hebei urban agglomeration: A slacks-based measures method," Resources Policy, Elsevier, vol. 70(C).
    8. Zejun Yu & Yao Wang & Bin Zhao & Zhixin Li & Qingli Hao, 2023. "Research on Carbon Emission Structure and Model in Low-Carbon Rural Areas: Bibliometric Analysis," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    9. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Claudia Calle Müller & Mohamed ElZomor, 2024. "Addressing Post-Disaster Challenges and Fostering Social Mobility through Origami Infrastructure and Construction Trade Education," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    11. Craig Langston & Edwin H. W. Chan & Esther H. K. Yung, 2018. "Hybrid Input-Output Analysis of Embodied Carbon and Construction Cost Differences between New-Build and Refurbished Projects," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    12. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    13. ZhiWu Zhou & Julián Alcalá & Víctor Yepes, 2020. "Environmental, Economic and Social Impact Assessment: Study of Bridges in China’s Five Major Economic Regions," IJERPH, MDPI, vol. 18(1), pages 1-33, December.
    14. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    15. Andrea Salandin & Alberto Quintana-Gallardo & Vicente Gómez-Lozano & Ignacio Guillén-Guillamón, 2022. "The First 3D-Printed Building in Spain: A Study on Its Acoustic, Thermal and Environmental Performance," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    16. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    17. Luiz Maurício Maués & Norma Beltrão & Isabela Silva, 2021. "GHG Emissions Assessment of Civil Construction Waste Disposal and Transportation Process in the Eastern Amazon," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    18. Jozef Švajlenka & Mária Kozlovská, 2021. "Factors Influencing the Sustainability of Wood-Based Constructions’ Use from the Perspective of Users," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    19. Vidhyalakshmi Chandrasekaran & Jolanta Dvarioniene & Ausrine Vitkute & Giedrius Gecevicius, 2021. "Environmental Impact Assessment of Renovated Multi-Apartment Building Using LCA Approach: Case Study from Lithuania," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    20. Leslie Ayagapin & Jean Philippe Praene, 2020. "Environmental Overcost of Single Family Houses in Insular Context: A Comparative LCA Study of Reunion Island and France," Sustainability, MDPI, vol. 12(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5601-:d:1517443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.