IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5379-d1509277.html
   My bibliography  Save this article

Design and Optimization of a Permanent Magnet Synchronous Motor for a Two-Dimensional Piston Electro-Hydraulic Pump

Author

Listed:
  • Xinguo Qiu

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
    Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China)

  • Zhili Wang

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
    Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China)

  • Changlong Li

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
    Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China)

  • Tong Shen

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
    Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China)

  • Ying Zheng

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
    Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China)

  • Chen Wang

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
    Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China)

Abstract

A two-dimensional (2D) piston electro-hydraulic pump has been proposed further to enhance the power density of the electro-hydraulic pump. The 2D piston pump, characterized by high power density and a slender shape, is embedded within the stator of the motor in a co-rotor configuration where the piston and the motor’s rotor are in tandem. The intimate design of the hydraulic pump and the motor results in a coupling between the two, with intricate relationships and influences existing between the geometric parameters of the piston pump and the dimensions of the motor’s rotor. Based on the operational requirements and structure of the 2D piston pump, a permanent magnet synchronous motor (PMSM) designed for use with a 2D piston electro-hydraulic pump is developed. This study examines the impact of the motor’s stator iron core geometric parameters on both the electromagnetic and mechanical properties of a PMSM and completes the necessary performance validations. The optimization objectives of the motor are determined through an analysis of the influence of the key parameters of the rotor and stator on torque, torque ripple, and motor loss. A surrogate optimization model is constructed using a metamodel of optimal prognosis (MOP) to optimize the torque, torque ripple, and motor loss. Evolutionary genetic algorithms are utilized to achieve the multi-objective optimization design. A finite element simulation is used to compare the electromagnetic performance of the initial motor and optimal motor. Based on the optimal motor parameters, a 2.5 kW motor prototype is manufactured, and the experimental results validate the feasibility and effectiveness of the motor design and optimization.

Suggested Citation

  • Xinguo Qiu & Zhili Wang & Changlong Li & Tong Shen & Ying Zheng & Chen Wang, 2024. "Design and Optimization of a Permanent Magnet Synchronous Motor for a Two-Dimensional Piston Electro-Hydraulic Pump," Energies, MDPI, vol. 17(21), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5379-:d:1509277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5379/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5379/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Xiaofeng & Du, Min & Zhou, Tong & Guo, Hong & Zhang, Chengming, 2017. "Comprehensive comparison between silicon carbide MOSFETs and silicon IGBTs based traction systems for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 626-634.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boud Verbrugge & Haaris Rasool & Mohammed Mahedi Hasan & Sajib Chakraborty & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Reliability Assessment of SiC-Based Depot Charging Infrastructure with Smart and Bidirectional (V2X) Charging Strategies for Electric Buses," Energies, MDPI, vol. 16(1), pages 1-15, December.
    2. Xiaofeng Ding & Min Du & Jiawei Cheng & Feida Chen & Suping Ren & Hong Guo, 2017. "Impact of Silicon Carbide Devices on the Dynamic Performance of Permanent Magnet Synchronous Motor Drive Systems for Electric Vehicles," Energies, MDPI, vol. 10(3), pages 1-19, March.
    3. Guo, Qingbo & Zhang, Chengming & Li, Liyi & Gerada, David & Zhang, Jiangpeng & Wang, Mingyi, 2017. "Design and implementation of a loss optimization control for electric vehicle in-wheel permanent-magnet synchronous motor direct drive system," Applied Energy, Elsevier, vol. 204(C), pages 1317-1332.
    4. Wang, Hanqing & Gaillard, Arnaud & Hissel, Daniel, 2019. "A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles," Renewable Energy, Elsevier, vol. 141(C), pages 124-138.
    5. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Guo Hong & Tian Wei & Xiaofeng Ding & Chongwei Duan, 2018. "Multi-Objective Optimal Design of Electro-Hydrostatic Actuator Driving Motors for Low Temperature Rise and High Power Weight Ratio," Energies, MDPI, vol. 11(5), pages 1-21, May.
    7. Ding, Xiaofeng & Chen, Feida & Du, Min & Guo, Hong & Ren, Suping, 2017. "Effects of silicon carbide MOSFETs on the efficiency and power quality of a microgrid-connected inverter," Applied Energy, Elsevier, vol. 201(C), pages 270-283.
    8. Ding, Xiaofeng & Lu, Peng & Shan, Zhenyu, 2021. "A high-accuracy switching loss model of SiC MOSFETs in a motor drive for electric vehicles," Applied Energy, Elsevier, vol. 291(C).
    9. Zhang, Jun & Du, Xiong & Qian, Cheng, 2021. "Lifetime improvement for wind power generation system based on optimal effectiveness of thermal management," Applied Energy, Elsevier, vol. 286(C).
    10. Han, Feng & Guo, Hong & Ding, Xiaofeng, 2021. "Design and optimization of a liquid cooled heat sink for a motor inverter in electric vehicles," Applied Energy, Elsevier, vol. 291(C).
    11. Ding, Xiaofeng & Guo, Hong & Xiong, Rui & Chen, Feida & Zhang, Donghuai & Gerada, Chris, 2017. "A new strategy of efficiency enhancement for traction systems in electric vehicles," Applied Energy, Elsevier, vol. 205(C), pages 880-891.
    12. Edemar O. Prado & Pedro C. Bolsi & Hamiltom C. Sartori & José R. Pinheiro, 2022. "An Overview about Si, Superjunction, SiC and GaN Power MOSFET Technologies in Power Electronics Applications," Energies, MDPI, vol. 15(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5379-:d:1509277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.