IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4464-d1472256.html
   My bibliography  Save this article

An Evolutionary Game Model of Market Participants and Government in Carbon Trading Markets with Virtual Power Plant Strategies

Author

Listed:
  • Yayun Yang

    (Business School, University of Shanghai for Science and Technology, Jungong Road 516, Yangpu District, Shanghai 200093, China)

  • Lingying Pan

    (Business School, University of Shanghai for Science and Technology, Jungong Road 516, Yangpu District, Shanghai 200093, China)

Abstract

The utilization of conventional energy sources commonly leads to heightened energy consumption and the generation of specific forms of environmental pollution. As an innovative power management and dispatch system, virtual power plants (VPPs) have the potential to significantly enhance the flexibility and stability of power systems, while supporting carbon reduction targets by integrating distributed energy resources (DERs), energy management systems (EMSs), and energy storage systems (ESSs), which have attracted much attention in the power industry in recent years. Consequently, it can effectively address the variability and management challenges introduced by renewable energy. Furthermore, optimizing power market dispatch and user-side power management plays a pivotal role in promoting the transition of the energy industry towards sustainable development. The current study highlights the unresolved issue of strategic decision-making among market participants, such as energy companies, generation companies, and power distribution companies, despite the potentially significant benefits of VPPs. These entities must carefully evaluate the costs and benefits associated with adopting a VPP. Additionally, governments face the complex task of assessing the feasibility and effectiveness of providing subsidies to incentivize VPP adoption. Previous research has not adequately explored the long-term evolution of these decisions in a dynamic market environment, leading to a lack of adequate understanding of optimal strategies for market participants and regulators. This paper addresses this critical research gap by introducing an innovative bilateral evolutionary game model that integrates VPP and carbon trading markets. By utilizing the model, simulation experiments are carried out to compare different strategic decisions and analyze the stability and long-term evolution of these strategies. Research findings indicate that the adoption of VPP technology by market participants, in conjunction with government policies, results in an average 90% increase in market participants’ earnings, while government revenues see a 35% rise. This approach provides an alternative method for understanding the dynamic interactions between market participants and government policy, offering both theoretical and practical insights. The findings significantly contribute to the literature by proposing a robust framework for integrating VPPs into electricity markets, while offering valuable guidance to policymakers and market participants in developing effective strategies to support the sustainable energy transition. The application of this model has not only enhanced the understanding of market dynamics in theory, but also provided quantitative support for strategic decisions under different market conditions in practice.

Suggested Citation

  • Yayun Yang & Lingying Pan, 2024. "An Evolutionary Game Model of Market Participants and Government in Carbon Trading Markets with Virtual Power Plant Strategies," Energies, MDPI, vol. 17(17), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4464-:d:1472256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4464/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Bingxu & Duan, Pengfei & Fen, Mengdan & Xue, Qingwen & Hua, Jing & Yang, Zhuoqiang, 2023. "Optimal operation of distribution networks and multiple community energy prosumers based on mixed game theory," Energy, Elsevier, vol. 278(PB).
    2. Huang, Ren & Zhang, Sufang & Wang, Peng, 2022. "Key areas and pathways for carbon emissions reduction in Beijing for the “Dual Carbon” targets," Energy Policy, Elsevier, vol. 164(C).
    3. Gao, Hongchao & Jin, Tai & Feng, Cheng & Li, Chuyi & Chen, Qixin & Kang, Chongqing, 2024. "Review of virtual power plant operations: Resource coordination and multidimensional interaction," Applied Energy, Elsevier, vol. 357(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Liu & Qingjin Wang & Zhengrui Li & Shan Jiang, 2025. "An Evolutionary Game Analysis of Decision-Making and Interaction Mechanisms of Chinese Energy Enterprises, the Public, and the Government in Low-Carbon Development Based on Prospect Theory," Energies, MDPI, vol. 18(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peng & Huang, Ren & Zhang, Sufang & Liu, Xiaoli, 2023. "Pathways of carbon emissions reduction under the water-energy constraint: A case study of Beijing in China," Energy Policy, Elsevier, vol. 173(C).
    2. Félix González & Paul Arévalo & Luis Ramirez, 2025. "Game Theory and Robust Predictive Control for Peer-to-Peer Energy Management: A Pathway to a Low-Carbon Economy," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
    3. Jiaguo Liu & Hui Meng & Haonan Xu & Jihong Chen, 2025. "Economic–environmental coordination and influencing factors under dual-carbon goal: a spatial empirical evidence from China’s transport sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 531-569, January.
    4. Khalil Nimer & Muath Abdelqader & Cemil Kuzey & Ali Uyar, 2024. "Emission targeting and carbon emissions: The moderating effect of female directors," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 3480-3504, May.
    5. Lan, Bingying & Dong, Ke & Li, Li & Lei, Yalin & Wu, Sanmang & Hua, Ershi & Sun, Ruyi, 2023. "CO2 emission reduction pathways of iron and steel industry in Shandong based on CO2 emission equity and efficiency," Resources Policy, Elsevier, vol. 81(C).
    6. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    7. Luo, Haizhi & Zhang, Yiwen & Gao, Xinyu & Liu, Zhengguang & Song, Xia & Meng, Xiangzhao & Yang, Xiaohu, 2024. "Unveiling land use-carbon Nexus: Spatial matrix-enhanced neural network for predicting commercial and residential carbon emissions," Energy, Elsevier, vol. 305(C).
    8. Yang, Yuyan & Xu, Xiao & Pan, Li & Liu, Junyong & Liu, Jichun & Hu, Weihao, 2024. "Distributed prosumer trading in the electricity and carbon markets considering user utility," Renewable Energy, Elsevier, vol. 228(C).
    9. Zheng Jiang & Shuohua Zhang & Wei Li, 2022. "Exploration of Urban Emission Mitigation Pathway under the Carbon Neutrality Target: A Case Study of Beijing, China," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    10. Leila Bagherzadeh & Innocent Kamwa, 2023. "Joint Multi-Objective Allocation of Parking Lots and DERs in Active Distribution Network Considering Demand Response Programs," Energies, MDPI, vol. 16(23), pages 1-37, November.
    11. Phimsupha Kokchang & Yuan Zhao & Suthirat Kittipongvises, 2023. "Understanding Citizens’ Perceptions and Attitudes toward Energy Restructuring under China’s NDC for Quality of Life: A Case of Linfen City," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 566-576, September.
    12. Ziyuan Liu & Junjing Tan & Wei Guo & Chong Fan & Wenhe Peng & Zhijian Fang & Jingke Gao, 2024. "Hierarchical Optimal Dispatching of Electric Vehicles Based on Photovoltaic-Storage Charging Stations," Mathematics, MDPI, vol. 12(21), pages 1-13, October.
    13. Kaiss, Mateus & Wan, Yihao & Gebbran, Daniel & Vila, Clodomiro Unsihuay & Dragičević, Tomislav, 2025. "Review on Virtual Power Plants/Virtual Aggregators: Concepts, applications, prospects and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    14. Yuting Lai & Tingting Fei & Chen Wang & Xiaoying Xu & Xinhan Zhuang & Xiang Que & Yanjiao Zhang & Wenli Yuan & Haohao Yang & Yu Hong, 2025. "Energy Carbon Emission Reduction Based on Spatiotemporal Heterogeneity: A County-Level Empirical Analysis in Guangdong, Fujian, and Zhejiang," Sustainability, MDPI, vol. 17(7), pages 1-21, April.
    15. Zhao, Wenna & Ma, Kai & Yang, Jie & Guo, Shiliang, 2024. "A multi-time scale demand response scheme based on noncooperative game for economic operation of industrial park," Energy, Elsevier, vol. 302(C).
    16. Jiang, Tangyang & Cao, Chi & Lei, Leyuan & Hou, Jie & Yu, Yang & Jahanger, Atif, 2023. "Temporal and spatial patterns, efficiency losses and impact factors of energy mismatch in China under environmental constraints," Energy, Elsevier, vol. 282(C).
    17. Changsen Feng & Zhongliang Huang & Jun Lin & Licheng Wang & Youbing Zhang & Fushuan Wen, 2025. "Aggregation Model and Market Mechanism for Virtual Power Plant Participation in Inertia and Primary Frequency Response," Papers 2503.04854, arXiv.org.
    18. Liu, Xin & Lin, Xueshan & Qiu, Haifeng & Li, Yang & Huang, Tao, 2024. "Optimal aggregation and disaggregation for coordinated operation of virtual power plant with distribution network operator," Applied Energy, Elsevier, vol. 376(PA).
    19. Chang Gao & Yueyang Du & Yuhao Zhao & Yingqiao Jia & Jiansheng Wu, 2024. "Response of Low Carbon Level to Transportation Efficiency in Megacities: A Case Study of Beijing, China," Land, MDPI, vol. 13(7), pages 1-21, July.
    20. Yiqun Wu & Yuan Sun & Congyue Zhou & Yonghua Li & Xuanli Wang & Huifang Yu, 2023. "Spatial–Temporal Characteristics of Carbon Emissions in Mixed-Use Villages: A Sustainable Development Study of the Yangtze River Delta, China," Sustainability, MDPI, vol. 15(20), pages 1-21, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4464-:d:1472256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.